FISH-AGRO | Оборудование для разведения рыб
Технологии, проекты и оборудование для разведения рыбы в УЗВ. Рыбоводство и рыба разведение в Установках Замкнутого Водоснабжения! Тилапиа, Клариевый Сом, Осетр, Форель.
Tel.: +7(977) 276-99-23

Консультации, учебные курсы по УЗВ. УДАЛЁНКА!!!

Здравствуйте. Есть желание пройти профессиональную подготовку, приобрести новые знания в незнакомой сфере деятельности, выращивание рыбы в УЗВ, для создания своей аквафермы.
Предоставляете ли вы такую услугу, если да, то стоимость, время обучения, где находитесь. Спасибо.

УДАЛЁНКА!!! по скайпу!!!

ПРИГЛАШАЕМ ВАС НА ИНДИВИДУАЛЬНЫЕ УЧЕБНО ОЗНАКОМИТЕЛЬНЫЕ КУРСЫ!

Уважаемые начинающие рыбоводы и фермеры!

К нам на сайт поступает много писем и звонков от начинающих фермеров, желающих начать свой бизнес по разведению рыбы с "0", но не представляющих с чего начать, как и по какому плану надо действовать, чтобы достичь желаемого результата. Поверьте, это долгий разговор и поэтому лучше встречаться и разбираться в учебном кабинете или в офисе, чем по телефону. Нам приходится проводить телефонные консультации о системах УЗВ для различных видов гидробионтов по нескольку часов подряд. Типичные вопросы людей, планирующих начать бизнес в области аквакультуры:

  • С выращивания какой рыбы начать?
  • Какой минимальный объем рыбы необходимо выращивать, чтобы предприятие было прибыльным?
  • Каков срок окупаемости инвестиций в аквакультуру?
  • Каковы требования к предприятию аквакультуры со стороны государственных органов?
  • Какие корма лучше всего использовать?
  • Каким требованиям должна удовлетворять вода?
  • Где приобрести мальков? Каким образом доставить их на ферму? Как правильно оформить документацию?

В связи с этим, мы решили организовать учебные курсы и пригласить всех желающих на платной основе пройти курс молодого бойца. Будут сформированы фокус-группы по различным направлениям аквакультуры, определены место и время проведения занятий.

Данные курсы, по нашему мнению, безусловно, окажутся полезными не только для владельцев предприятий, но и для технического персонала, так как позволят в короткие сроки освоить основы товарного выращивания рыбы. Кроме групповой формы обучения возможны индивидуальные занятия.

Обучение на курсах позволит Вам узнать гораздо больше о ньюансах рыбоводства, сделать записи. В результате  Вы получите максимум информации по интересующей Вас тематике. Для иногородних слушателей курсов мы готовы организовать трансфер и проживание.

По итогам обучения Вы поймете, какую УЗВ, какой мощности и примерно по какой цене Вы можете себе позволить. Если по исходу обучения нами будет заключен контракт на предпроектные работы, то стоимость обучения будет зачтена в стоимости контракта полностью. Если по результатам предпроектных работ Вы пойдете дальше и закажете у нас бизнес план, то все наши расчеты бесплатно лягут в основу бизнес плана, который также на договорной основе будет сопровождаться вплоть до сдачи в банк.

После всех подготовительных работ наступит момент, когда Вы осознаете полностью всю ответственность за проект и решите начать работы по строительству и поставке оборудования.  В этом случае пуско-наладка оборудования (при условии выполнения нами монтажных работ) окажется также полностью бесплатна для Вас.

Предлагается участок 29Га в Каширском районе МО. пос Кокино под Сельскохозяйственный Потребительскй кооператив

Предлагается участок 29Га в Каширском районе МО. пос Кокино под Сельскохозяйственный Потребительскй кооператив

Земля сельскохозяйственного назначения. СХ-3. Идеально подходит для рыборазведения в УЗВ. Электричество по границе, газ недалеко.

Овраг по границе участка

Отдадим в хорошие руки


Документы, необходимые для реализации пищевой продукции в торговой сети и общественном питании

Документы, необходимые для реализации пищевой продукции в торговой сети и общественном питании

   В связи с поступающими многочисленными запросами относительно документов, необходимых в настоящее время для реализации в торговой сети и общественном питании пищевой продукции, сообщаем следующее.

    С 1 июля 2013 годана территории Таможенного союза действует Технический регламент Таможенного союза ТР ТС 021/2011 "О безопасности пищевой продукции" (далее - ТР ТС 021/2011), утвержденный решением Комиссии Таможенного союза от 09.12.2011.

    С 15 февраля 2015 года вся пищевая продукция, за исключением рыбы и рыбной продукции, выпущенная в обращение на территории Таможенного союза (Россия, Белоруссия, Казахстан), подлежит обязательному подтверждению соответствия в порядке, установленном ТР ТС 021/2011.

  Согласно требованиям ТР ТС 021/2011, основной формой подтверждения соответствия пищевой продукции является обязательное декларирование её соответствия законодательству Таможенного союза с оформлением и регистрацией декларации о соответствии техническому регламенту Таможенного союза ( )— документа, в котором подтверждается соблюдение обязательных требований безопасности к продукции и её соответствие требованиям Таможенного союза.

    Согласно статье 23 ТР ТС 021/2011: «Декларированию соответствия подлежит выпускаемая в обращение на таможенной территории Таможенного союза пищевая продукция, за исключением:

1) непереработанной пищевой продукции животного происхождения (подлежит ветеринарно-санитарной экспертизе с оформлением ветеринарного свидетельства (справки);

2) специализированной и новой пищевой продукции (подлежит государственной регистрации с оформлением свидетельства о государственной регистрации);

3) уксуса (не подлежит ни одной из форм оценки (подтверждения) соответствия)».

  Декларация о соответствии Таможенного союза принимается (оформляется) самим производителем или поставщиком продукции и передается для регистрации в аккредитованный орган по сертификации.

  Заявителем (декларантом) при декларировании соответствия требованиям Технических Регламентов Таможенного союза может быть только организация, зарегистрированная на территории Таможенного союза.

      Декларирование соответствия пищевой продукции требованиям ТР ТС 021/2011 и (или) технических регламентов Таможенного союза на отдельные виды пищевой продукции осуществляется путем принятия по выбору заявителя декларации о соответствии на основании собственных доказательств и (или) доказательств, полученных с участием третьей стороны.

     Декларирование соответствия пищевой продукции осуществляется по одной из схем декларирования, установленных ТР ТС 021/2011, по выбору заявителя пищевой продукции. Процедура декларирования соответствия по ТР ТС включает несколько этапов: подготовка и сбор полного пакета документов для предоставления в регистрирующий орган, оформление и принятие декларации, регистрация декларации в Едином реестре зарегистрированных деклараций Таможенного союза.

  Продажа товаров без декларации о соответствии техническому регламенту Таможенного союза в тех случаях, когда продукция попадает под декларирование по требованиям технических регламентов Таможенного союза, запрещена, подлежит принудительному отзыву с рынка и наказывается штрафом.

 Ветеринарно-санитарной экспертизе подлежит непереработанная пищевая продукция животного происхождения, которая при выходе в обращение сопровождается документом, содержащим сведения, подтверждающие безопасность (статья 30 ТР ТС 021/2011).

    В силу статьи 4 ТР ТС 021/2011, непереработанная пищевая продукция животного происхождения – не прошедшие переработку (обработку) туши (тушки) продуктивных животных всех видов, их части (включая кровь и субпродукты), молоко сырое, сырое обезжиренное молоко, сливки сырые, продукция пчеловодства, яйца и яйцепродукция, улов водных биологических ресурсов, продукция аквакультуры. Техническим регламентом Таможенного союза ТР ТС 034/2013 «О безопасности мяса и мясной продукции» уточняется перечень продукции, подлежащей ветеринарно-санитарной экспертизе: продукты убоя – непереработанная пищевая продукция животного происхождения, полученная в результате убоя в промышленных условиях продуктивных животных и используемая для дальнейшей переработки (обработки) и (или) реализации, включая мясо, субпродукты, жир-сырец, кровь, кость, мясо механической обвалки (дообвалки), коллагенсодержащее и кишечное сырье.

    Проведение ветеринарно-санитарной экспертизы и оформление ее результатов осуществляется в соответствии с законодательством государства-члена Таможенного союза, а также Соглашением Таможенного союза по ветеринарно-санитарным мерам.

   Подтверждение соответствия рыбы и рыбной продукции на основании Постановления Правительства Российской Федерации от 01.12.2009г. № 982 «Об утверждения единого перечня продукции, подлежащей обязательной сертификации, и единого перечня продукции, подтверждение соответствия которой осуществляется в форме принятия декларации о соответствии» осуществляется в форме принятия декларации о соответствии.

  Помимо документов, подтверждающих соответствие пищевой продукции требованиям технических регламентов Таможенного союза, пищевая продукция, находящаяся в обращении, в том числе продовольственное (пищевое) сырье, должна сопровождаться товаросопроводительной документацией, обеспечивающей прослеживаемость данной продукции (статья 5 ТР ТС 021/2011). Прослеживаемость пищевой продукции – возможность документарно (на бумажных и (или) электронных носителях) установить изготовителя и последующих собственников находящейся в обращении пищевой продукции, кроме конечного потребителя, а также место происхождения (производства, изготовления) пищевой продукции и (или) продовольственного (пищевого) сырья (статья 4 ТС 021/2011).

    Таким образом, в законном обороте может находиться пищевая продукция в сопровождении следующих документов:

1) декларация соответствия требованиям Технического регламента Таможенного союза;

2)    декларация о соответствии  (рыба и рыбная продукция);

3) ветеринарное свидетельство (ветеринарная справка) (непереработанная пищевая продукция животного происхождения);

4) свидетельство о государственной регистрации (новая и специализированная пищевая продукция);

5) товаросопроводительная документация, обеспечивающая прослеживаемость пищевой продукции (все пищевые продукты).

Грант «Агростартап»

Грант «Агростартап»: как получить и на что потратить

В России появилась новая форма господдержки АПК – гранты «Агростартап». Они помогут сделать первые шаги тем, кто собирается организовать фермерское хозяйство. Размер «Агростартапа» и условия получения.

Кто может претендовать на «Агростартап»?

Получить грант «Агростартап» может гражданин Российской Федерации, который постоянно проживает в сельской местности и намерен заняться (или уже занимается) сельским хозяйством.

Претендент на «Агростартап» не должен быть получателем какого-либо иного гранта по линии Минсельхоза (например, «Начинающий фермер» или «Семейная животноводческая ферма»).

Претендент на «Агростартап» не должен осуществлять предпринимательскую деятельность в течение последних трёх лет в качестве индивидуального предпринимателя без образования юридического лица и (или) не являться учредителем (участником) коммерческой организации, за исключением крестьянского (фермерского) хозяйства, главой которого он является.

В отличие от гранта «Начинающий фермер», «Агростартап» может быть предоставлен и владельцу личного подсобного хозяйства – но с условием, что в течение 30 дней после того, как претендента на грант назовут гранополучателем, он зарегистрирует своё КФХ в Федеральной налоговой службе.

Джерки, снэки и копчености из рыбы. Пальчики оближешь

Время снеков наступило!

Традиционные модели питания изменились — это очевидный и неоспоримый факт. В сегодняшнем сумасшедшем ритме жизни потребитель желает есть и пить всё, что захочет, везде, где захочет, и в любое удобное время.

«Перекусывание» находится в центре потребительского поведения. Люди готовы пробовать новые вкусы, новые ингредиенты, новые типы продуктов, а за удачное сочетание ценностей продукта они готовы платить и «переплачивать». Вкусные снеки должны отвечать множеству требований, таких как удобство, компактность, инновации, польза для здоровья, универсальность, разнообразие, запоминающийся «WOW-эффект».

Перекусы приводят к изменениям в структуре покупательских покупок, и это — главный фактор перемен и возможностей в пищевой промышленности.

Вступил в силу новый техрегламент на рыбную продукцию

Вступил в силу новый техрегламент на рыбную продукцию

С 1 сентября 2019 года перестают действовать переходные положения технического регламента Евразийского экономического союза (ЕАЭС) «О безопасности рыбы и рыбной продукции»

Таким образом, один из важнейших для рыбного рынка документ, основная часть положений которого заработала еще с сентября 2017 года, сейчас вступает в полную силу.

 Время для адаптации

Техрегламент разработан учеными и специалистами пяти стран для защиты жизни и здоровья потребителей и предупреждения попыток фальсификации. Его действие распространяется на пищевую рыбную продукцию, за исключением продуктов, изготовленных гражданами для собственного употребления, биологически активных добавок и специализированных товаров. Уделяется внимание сырью, упаковке, а также процессу вылова, хранения и транспортировки.

«Задача техрегламента – сделать безопасными все этапы обращения пищевой рыбной продукции: от вылова и переработки до реализации, а также утилизации. Он защищает интересы потребителей и определяет для бизнеса правила работы», – рассказала «ВиЖ» советник по качеству рыбной продукции Всероссийского НИИ рыбного хозяйства и океанографии (ВНИРО) Любовь Абрамова.

Стоит отметить, что до 1 сентября 2019 года разрешался выпуск в ЕАЭС продукции, изготовленной по требованиям, установленным другими национальными и межгосударственными нормативными актами, например техрегламентом о безопасности пищевой продукции или СанПиНами. Соответственно, действовали и документы, выданные до 1 сентября 2017 года. Переходный период нужен был, чтобы бизнес мог безболезненно адаптироваться к новым правилам, поясняют во ВНИРО. С сентября этого года проводить оценку соответствия рыбы и рыбной продукции необходимо уже по новым требованиям.

По техрегламенту оформление декларации необходимо для всей рыбной продукции, кроме детской, непереработанной и рыбных изделий нового вида. Для детского питания и только что введенных в производство продуктов нужно получать свидетельство о государственной регистрации. Непереработанная рыба и водные беспозвоночные подвергаются ветеринарно-санитарной экспертизе.

 Вам со льдом?

В техрегламенте установлены требования по содержанию ледяной глазури. Ее масса в замороженной продукции из рыбы должна быть не более 5%, из очищенных ракообразных – не более 7%, из неразделанных ракообразных – не более 14%. Масса нетто рыбы должна указываться на упаковке отдельно от массы глазури.
«Кроме того, впервые установлены нормы допустимого содержания влаги в мышечной ткани мороженой продукции из основных видов промысловых рыб и водных беспозвоночных, – отмечают во ВНИРО. – Это сделано, чтобы пресечь накачивание продукции растворами». Так, показатель содержания влаги в сельди, горбуше и наваге должен быть не более 82%, в радужной форели – не более 76%, в креветках – не более 80%. На первый взгляд, воды многовато. Однако, например, тело человека в среднем на 70% тоже состоит из воды. При этом рыба живет в воде, соответственно, собственной влаги в ее организме больше, поясняют эксперты. Приобретая пакетик сушеной рыбы, покупатель может обратить внимание на то, что на небольшую полоску мяса уходит почти целая рыбка.

Также техрегламент определяет максимально допустимые уровни содержания остатков ветпрепаратов, стимуляторов роста и лекарственных средств. В том числе запрещает или минимизирует содержание в рыбопродуктах антибиотиков и других вредных для здоровья человека препаратов, которые могут использоваться в аквакультуре. Дикая рыба должна быть выловлена в безопасных районах добычи, которые определяются по результатам мониторинга. К обращению не допускается продукция, содержащая биотоксины или подвергнутая размораживанию в период хранения, а также рыба с температурой в толще тканей выше минус 18 градусов.

Особое внимание уделено производству детского питания. Продукцию для детей до года можно производить только на специализированных производствах или отдельных технологических линиях. Питание для детей от одного года, включая школьный возраст, можно производить на технологическом оборудовании общего назначения, но обязательно в начале смены или в отдельную смену после его мойки и дезинфекции. Нельзя использовать усилители вкуса, фосфаты, сорбиновую, бензойную кислоты и их соли.

Изменения коснулись и маркировки. Теперь производители обязаны указывать на упаковке зоологическое наименование вида водного биоресурса, например «палтус черный гренландский». «Это требование может внести вклад в борьбу с фальсификацией на рыбном рынке, недостоверным информированием о происхождении продукции», – поясняет Любовь Абрамова. В случаях, если в документах по стандартизации отсутствуют те или иные наименования, используются международные классифицирующие акты. Если у производителей возникают вопросы, ВНИРО дает рекомендации и разъяснения. В том случае, если наименование длинное, оно полностью указывается на транспортной упаковке, а на потребительской упаковке небольшого размера – в сокращенном варианте.

Эксперт также отметила, что приведенное в техрегламенте определение «пищевая рыбная продукция» является обобщающим для всей продукции, но не содержит признаков, которые позволили бы отделить собственно рыбную продукцию от той, в которой имеются рыбные компоненты. Например, пироги с рыбой и рисом, оливки с анчоусами, хлебобулочные изделия с начинками из рыбы, кондитерские изделия с водорослями. «Существующая практика относить к пищевой продукции смешанного состава ту, что содержит менее 5% рыбного компонента (по аналогии с мясной продукцией), не решает проблему. Производитель должен самостоятельно определить, объектом регулирования какого техрегламента является его продукция: о безопасности пищевой рыбной продукции или о безопасности рыбы и рыбной продукции», – уточнила Любовь Абрамова.

Вся продукция, соответствующая требованиям техрегламента, маркируется единым знаком обращения продукции на рынке ЕАЭС. Товарам, не отвечающим требованиям техрегламента, путь на прилавки магазинов запрещен. Нарушителям грозят как задержание груза, так и штрафные санкции. По Кодексу об административных правонарушениях размер штрафа для юридических лиц составляет от 100 тысяч до 1 миллиона рублей.

 



И хватит паразитировать


Одно из самых обсуждаемых нововведений, заложенных в техрегламенте, касается паразитарной чистоты пищевой продукции. Действующие до утверждения регламента документы запрещали реализацию рыбы с живыми паразитами. Техрегламент же не допускает реализацию продукции, употребляемой в пищу, части которой поражены видимыми паразитами, в том числе неживыми, пояснила «ВиЖ» заведующая испытательной референс-лабораторией ФГБУ «Национальный центр безопасности продукции водного промысла и аквакультуры» Ольга Трубникова.
Переработчики после нескольких случаев задержаний товарных партий забили тревогу и попросили уточнить норму или дать официальные разъяснения. Наличие в рыбе неживых паразитов хоть и неэстетично, но безопасно, подчеркивали они. Однако сейчас любые паразиты – живые или мертвые – могут стать поводом для остановки всей партии.
«В результате под угрозой срыва поставок в Россию оказалась рыбная продукция, выловленная отечественными рыбодобытчиками на судах в море, прежде всего речь идет о путассу и морском окуне. Это может привести в будущем к тому, что часть рыбной продукции будет поставлена не на внутренний, а на иностранные рынки, где требования ветеринарных служб допускают поставку продукции с видимыми паразитами, если они неживые», – отмечает президент Всероссийской ассоциации рыбохозяйственных предприятий, предпринимателей и экспортеров (ВАРПЭ) Герман Зверев.

Для решения проблемы 1 августа 2019 года в Евразийской экономической комиссии (ЕЭК) состоялось совещание по применению требований техрегламента, участники которого единогласно пришли к мнению, что пункт документа, согласно которому не допускается реализация пищевой рыбной продукции, употребляемые в пищу части которой поражены видимыми паразитами, должен применяться исключительно в отношении конечного потребителя. То есть «физического лица, заказывающего, приобретающего или использующего пищевую рыбную продукцию исключительно для личных, семейных, домашних и иных нужд, не связанных с осуществлением предпринимательской деятельности». В остальных случаях в части паразитарной безопасности оборот продукции между участниками рынка свободный.

Вместе с тем обсуждается вопрос о внесении изменений в техрегламент. «Необходимо создать простой и прозрачный механизм регулирования, который будет применяться к поставщикам рыбы. На наш взгляд, требования ЕС более объективны и согласованы между собой, рыбацкое сообщество предлагает ориентироваться именно на них», – отметил руководитель ВАРПЭ.
Специалисты предлагают внести в нормирующую часть техрегламента показатели по уровню допустимого содержания паразитов. Ольга Трубникова пояснила, что такие инструкции уже разработаны и содержатся в методических указаниях для лабораторных исследований.


Регламент есть. Что дальше?

Но и на этом работа не будет закончена. Как сообщили в ЕЭК, в 2019–2022 годах в дополнение к профильному техрегламенту будет разработано 29 новых межгосударственных стандартов на рыбу и рыбную продукцию, в том числе 14 – на основе национальных стандартов России. Кроме того, планируется пересмотреть пять межгосударственных стандартов в связи с введением обновленных стандартов ИСО (международные стандарты качества. – Прим. ред.).
Несмотря на то что для всех стран – участниц ЕАЭС действует единый техрегламент, дополняющие стандарты в каждой стране свои. Это порой усложняет и работу бизнеса на территории союза, и взаимодействие контролирующих органов. Разработка общих документов как раз направлена на то, чтобы устранить возникающие разногласия.

Ксения Тимакова
Задача техрегламента – сделать безопасными все этапы обращения пищевой рыбной продукции: от вылова и переработки до реализации, а также утилизации. Он защищает интересы потребителей и определяет для бизнеса правила работы

Удаление твердых частиц из холодноводной УЗВ. Сравнение гидроциклона с отстойником радиального типа

Удаление твердых частиц из холодноводной УЗВ. Сравнение гидроциклона с отстойником радиального типа

В данной статье приводятся результаты исследования, в котором оценивалась эффективность удаления твердых частиц гидроциклоном и отстойником радиального типа. Каждое устройство устанавливалось в систему замкнутого водоснабжения для выращивания Арктического гольца и радужной форели до товарного размера. Объем бассейна культивирования составлял 150 м3, скорость водообмена 4500-4800 л/мин. Примерно 92-93% потока проходило через пристеночный дренаж Cornell-типа. Оставшиеся 7-8% потока, т.е. 340 л/мин, покидали бассейн через донный дренаж и внешний стояк, а затем направлялись в отстойник.

Удельная нагрузка на оба отстойника составляла 0.0031 м3/сек на м2 площади осаждения. Гидроциклон и отстойник радиального типа сравнивались в условиях различной нагрузки кормом. Оценивалась концентрация поступающих твердых частиц (TSS) и эффективность их удаления. Были получены статистически значимые различия в эффективности удаления твердых частиц гидроциклоном и отстойником радиального типа (p<0.001). Эффективность этих устройств составила 37.1±3.3% и 77.9±1.6%, соответственно. Кроме того, эффективность отстойника радиального типа показала более высокую стабильность, чем гидроциклона. Тенденция механической фильтрации твердых частиц была постоянной на протяжении широкого диапазона концентраций поступающих в сепаратор загрязнений. Баланс масс показал, что гидроциклон удаляет примерно 23% всех твердых частиц из УЗВ. С другой стороны, отстойник радиального типа в тех же условиях удаляет 48% твердых частиц ежедневно.

Баланс масс также указывает на то, что с любым типом отстойника микросетчатый барабанный фильтр удаляет 40-45% твердых частиц ежедневно. В любом случае, результаты показывают, что барабанный фильтр обрабатывает весь водный поток и играет важную роль в недопущении накопления твердых частиц в рециркуляционной системе.

  Введение

Быстрое и эффективное удаление твердых загрязнений положительно сказывается на здоровье Лососевых в УЗВ. Накопление загрязнений в емкости культивирования и системе способствует развитию патогенной микрофлоры. Кроме того, длительное сохранение твердых частиц в системе приводит к их разложению на мелкие частицы, утечке нутриентов, ухудшению качества воды, возрастанию потребностей в кислороде и возрастанию концентрации углекислого газа. Мелкие взвешенные частицы травмируют жабры, снижают иммунитет и провоцируют вспышку инфекции. Неэффективное удаление твердых частиц из системы аквакультивирования также вредит её компонентам. Например, излишки загрязнений могут забить колонны аэрации, решетчатые экраны и флейты для разбрызгивания.

Многие современные системы с рециркуляцией воды, используемые для культивирования Арктического гольца, радужной форели или смолта Лососевых в Северной Америке, включают бассейны с двойным дренажем. Этот дренаж, расположенный на дне емкости, позволяет быстро отделить и удалить подавляющую долю осаждаемых частиц из бассейна. Обычно через него проходит небольшая часть водного потока, 5-20%. Затем, для захвата осаждаемых частиц, которые сконцентрировались при прохождении через дренаж, применяются относительно небольшие диаметры.

Центробежные сепараторы или гидроциклоны работают за счет придания частицам загрязнения центробежного ускорения. Вода направляется тангенциально к внешнему радиусу конической емкости, что приводит к её вращению вокруг центральной оси. Первичное вращение внутри емкости порождает вторичный радиальный поток, направленный к центру, и, таким образом, улучшается захват загрязнений. Гидроциклоны традиционно применяются в областях, где необходимо отделить частицы со специфической высокой плотностью. Так песок в 2.65 раза тяжелее воды. Так как твердые загрязнения в аквакультуре имеют плотность 1.005-1.20, т.е. ненамного больше, чем вода, их осаждение не всегда гарантируется. Отделения таких частиц можно добиться лишь поддержанием соответствующей гидравлической нагрузки. Удаление твердых загрязнений в аквакультуре при помощи гидроциклона преимущественно зависит от плотности и относительно независимо от сил инерции. Одним из наиболее важных параметров, характеризующих производительность гидроциклона и его размер при заданной скорости водного потока, является удельная нагрузка на него. Захват частиц можно улучшить, при низких скоростях поступающей воды (низкой скорости вращения), когда смещают выходной патрубок от центра гидроциклона и увеличивают его диаметр (снижают скорость оттока).

Так как загрязнения в аквакультуре имеют низкую специфическую плотность, они могут оставаться во взвешенном состоянии в уходящем из двойного донного дренажа и гидроциклона потоке. Поэтому данный поток часто подвергают вторичной очистке, например, с помощью барабанного фильтра.

Отстойники радиального типа также именуются отстойниками с круговой центральной подачей. Это самые распространенные аппараты для очистки городских сточных вод. Они очень похожи на гидроциклоны, потому что имеют цилиндрическую форму, часто с конусовидной нижней частью, и отток воды также происходит через верх. Однако гидравлика этих аппаратов совершенно отличается. В отстойниках радиального типа вода поступает в центр сосуда, внутрь ослабляющего турбуленцию цилиндра (далее потексту — демпфер цилиндр). Затем поток выходит из емкости в радиальном направлении (равномерно по окружности), а загрязнения задерживаются по периметру. Радиальный поток ослабляет скорость воды и улучшает осаждение частиц. Кроме того, окружность цилиндрического сосуда обеспечивает большую длину водослива, которая снижает нагрузку на него загрязнениями. Центральное расположение входного патрубка важно для подавления турбуленции, порождаемой поступающим потоком. Поэтому демпфер цилиндр в центре отстойника должен иметь минимальный диаметр 25% от диаметра самого отстойника. Для недопущения взмучивания он располагается значительно выше предполагаемой высоты ила.

Данная статья основана на результатах исследования John Davidson, Steven T. Summerfelt «Solids removal from a coldwater recirculating system—comparison of a swirl separator and a radial-flow settler», Aquacultural Engineering 33: 47–61. 2005. В работе показано, что гидравлика отстойника радиального типа лучше осаждает твердые загрязнения, чем гидроциклона. Предметом исследования была оценка эффективности удаления твердых частиц в условиях коммерческой УЗВ для выращивания Лососевых. Измерялось изменение общего уровня взвешенных частиц (TSS) при прохождении потоком барабанного фильтра, а также гидроциклона или отстойника радиального типа.

В идеале, аппарат для очистки загрязненной части стока, поступающего от донного дренажа бассейна, должен захватывать большинство твердых частиц.

Материалы и методы

Исследование проводилось на полномасштабной коммерческой УЗВ для выращивания Арктического гольца (1.3 кг при отлове), а затем радужной форели (0.7 кг при отлове). Не смотря на простоту эксперимента, он позволил избежать сложностей при экстраполировании результатов на практике, полученных на мелких модельных системах. Так как он оценивал эффективность захвата твердых загрязнений непосредственно после их прохождения через донный дренаж, исчезла необходимость экстраполяции данных, полученных с искусственными загрязнениями, которые воспроизводят размер и скорость оседания рыбьих фекалий.


Рисунок 1. Система с рециркуляцией воды института Пресных вод (Шепердстаун, Западная Виргиния)


  Аппараты отстойники для осаждения загрязнений

Отделение твердых частиц из дренажного стока оценивалось в условиях полностью работающей, эксплуатируемой системы, с включением гидроциклона, либо отстойника радиального типа в петлю механической очистки. Для обеих схем была модифицирована емкость отстойник. Она имела цилиндрическую форму, диаметр 1.52 метра, длину 2.1 метра, имела цилиндрический водослив с V-образной зубчатой кромкой. Нижняя часть емкости была конусовидной с углом 60 градусов, длиной 1.30 метра и дренажом у основания диаметром 7.5 см. V-образная зубчатая кромка устанавливала уровень воды в отстойнике на значении 1.77 метра выше основания конуса.


Рисунок 2. Схема отстойника радиального типа (слева) и гидроциклона (справа) в институте Пресных вод (Шепердстаун, Западная Виргиния)

 

В первом эксперименте емкость отстойника оборудовалась как гидроциклон. Поток воды поступал в неё через патрубок диаметром 10 см, расположенный тангенциально к стенке. Патрубок входил в емкость примерно посередине его продольной линии и на 0.38 см ниже зубчатой кромки водослива. Для отстойника радиального типа тангенциальный входной патрубок убирался, и в центре емкости располагалась входная труба диаметром 10 см. Она изгибалась под прямым углом, чуть ниже уровня воды. Кроме того, вокруг она заключалась в стекловолоконный демпфер цилиндр диаметром 0.61 метра. Этот цилиндр глушил турбуленцию в точке поступления воды. Благодаря ему, вода сначала направлялась вниз, вдоль стенок цилиндра, а затем, подымалась до зубчатого водослива, образуя радиальный поток.

В процессе экспериментов с гидроциклоном и отстойником радиального типа осадок не сливался из конуса. Один или два раза в день осадок вручную удалялся из отстойников. Один раз в неделю отстойники полностью осушались и ополаскивались. Скорость потока измерялась с помощью ультразвукового расходомера Transport Model PT868.

Анализ твердых частиц

Для того, чтобы оценить эффективность удаления твердых частиц, образцы воды собирались один или два раза в неделю:

— из поступающего в емкость культивирования потока

— из выходящего из пристеночного дренажа потока, донного дренажа, а также на выходе из барабанного фильтра, отстойников

— образцы свежей воды.

За несколько лет было собрано 53 набора образцов, когда в систему вносилось высокое и низкое количество корма. Анализ концентрации TSS проводился по методу 2540 D (APHA, 1998). Согласно ему, загрязнения фильтровались стандартным стекловолоконным фильтром, высушивались при температуре 103-105° и взвешивались.

Эффективность удаления TSS через микросетчатый барабанный фильтр и через отстойники рассчитывалась на основе ежедневных данных о концентрации загрязнений на входе и на выходе аппаратов. Затем рассчитывалась средняя эффективность (± ошибка средней).

Для определения различий в концентрации TSS, поступающих в аппараты отстойники между двумя обработками, концентрация TSS на входе в отстойники использовалась в качестве коварианты (регрессор – независимая переменная) в анализе ANCOVA. Использовались данные параллельных измерений эффективности удаления TSS и концентрации TSS, поступающих в отстойники.


Таблица 1. Средняя (ошибка средней) TSS концентрации, эффективности удаления TSS, поток воды и потоки масс, количество корма

Концентрация TSS в различных частях системы + гидроциклон + отстойник радиального типа
TSS потока в культуральный бассейн, мг/л 2.4±0.5 2.7±0.3
TSS потока подпиточной воды, мг/л 0.4±0.1 0.4±0.1
TSS потока, выходящего из донного дренажа = вход в отстойник, мг/л 16.5±1.3 27.7±2.6
TSS потока, выходящего из пристеночного дренажа = вход в барабанный фильтр, мг/л 3.2±0.3 4.5±0.6
TSS потока, выходящего из гидроциклона (отстойника радиального типа), мг/л 9.6±0.5 6.4±0.4
TSS потока, выходящего из барабанного фильтра, мг/л 2.2±0.2 3.1±0.4
Число измерений данных 24 22
Средняя эффективность удаления твердых частиц или фракционирование (средняя эффективность рассчитывалась от всех значений ежедневной эффективности удаления)
Соотношение TSS фракционирования между дном культурального бассейна и пристеночным дренажем 6.2±0.7 7.3±0.8
Эффективность удаления TSS барабанным фильтром, % 28.6±3.7 31.9±3.4

Эффективность удаления гидроциклона (отстойника радиального типа), %

37.1±3.3 77.9±1.6
Средний поток воды
Поток подпиточной воды, л/мин 337±15 278±31
Поток подпиточной воды, % от всего объема циркулирующей воды 7.0±0.3 6.2±0.7
Поток через барабанный фильтр, л/мин 4497±32 4333±58
Общий поток к культуральному бассейну, л/мин 4726±36 4514±14
Поток через донный дренаж, л/мин 340±28 340±28
TSS баланс масс
Средняя ежедневная подача корма, кг/сутки 63.5±5.1 100.4±8.6
Масса TSS, поступающая в культуральный бассейн, кг\сутки 16.2 17.6
Масса TSS, покидающая донный дренаж, кг/сутки 8.1 13.6
Масса TSS, покидающая пристеночный дренаж, кг/сутки 20.8 28.1
Масса TSS, поступающая с подпиточной водой в УЗВ, кг\сутки 0.2 0.2
Масса TSS, удаляемая из УЗВ через дно гидроциклона (отстойника радиального типа), кг\сутки 3.4 10.4
Масса TSS, из УЗВ через водослив, кг\сутки 4.6 2.6
Масса TSS, удаляемая из УЗВ на обратную промывку барабанного фильтра, кг/сутки 6.5 8.7
Общая масса TSS, удаляемая из УЗВ, кг/сутки 14.4 21.7
Общая масса TSS, удаляемая из УЗВ на единицу корма, % 22.7 21.6
TSS, удаляемая гидроциклоном (отстойником радиального типа), % от всей удаляемой массы 23.4 48.0
TSS, удаляемая через водослив системы, % от всей удаляемой массы 31.7 11.8
TSS, удаляемая барабанным фильтром, % от всей удаляемой массы 44.9 40.2


Результаты и обсуждение TSS фракционирование в культуральном бассейне

В ходе всех экспериментов в коммерческой системе сохранялась относительно низкая концентрация TSS в толще воды 150 м3 бассейна. Т.е. средняя концентрация TSS составляла 3.2±0.3 мг/л и 4.5±0.6 мг/л на выходе из пристеночного дренажа — для экспериментов с включением гидроциклона или отстойника радиального типа, соответственно. После обработки в УЗВ и добавлении подпиточной воды, поток возвращался в бассейн и имел концентрацию TSS 2.4±0.5 мг/л и 2.7±0.3 мг/л – для экспериментов с включением гидроциклона или отстойника радиального типа, соответственно.

Предполагается, что такой низкий уровень загрязнений обусловлен эффективным фракционированием осаждаемых частиц через донный дренаж бассейна. Средняя концентрация TSS в потоке, проходящем через донный дренаж, составляет 16.5±1.3 мг/л и 27.7±2.6 мг/л – для экспериментов с включением гидроциклона или отстойника радиального типа, соответственно. Различия в концентрациях TSS, покидающих культуральный бассейн, вероятно, связаны с более высокой подачей корма в экспериментах с отстойником радиального типа (100.4±8.6 мг/сутки против 63.5±5.1 кг/сутки для гидроциклона, соответственно). В среднем, концентрация TSS в воде, покидающей донный дренаж, была в 6.2±0.7 и 7.3±0.8 раз больше, чем в воде, покидающей пристеночный дренаж, в экспериментах с гидроциклоном и отстойником радиального типа, соответственно.

Известно, что гидравлика цилиндрического бассейна диаметром 9.1 метра позволяет вымывать твердые частицы через донный дренаж, спустя всего 3-6 минут после их внесения в емкость. Кроме того, хотя сток через донный дренаж составляет лишь 7-8% от всего водного потока, он содержит примерно 60% TSS загрязнений. Предполагается, что масса TSS, поступающая в бассейн, состоит из тонких твердых частиц, которые разделяются на пути к обоим дренажам. Важно отметить, что эта масса TSS может быть слегка больше или слегка меньше массы TSS, образующейся из корма в самом бассейне (зависит от количества поступающего корма). Это показывает, что дальнейшие улучшения технологий контроля за TSS могут заключаться в снижении концентрации взвешенных частиц в воде, возвращаемой в бассейн.

Удаление TSS через отстойники

Отстойник радиального типа оказался лучше, чем гидроциклон. Эффективность удаления TSS составила 37.1±3.3% и 77.9±1.6% для гидроциклона и отстойника радиального типа, соответственно. Тест ANCOVA показал статистически значимые различия (P<0.001) в эффективности удаления, а также концентрации TSS, поступающей в два аппарата. Ковариант (концентрация TSS на входе в аппараты), используемый в тесте ANCOVA, оказался эффективным в контроле различий концентраций TSS, поступающих в отстойники (P=0.0019). Эффективность удаления частиц через отстойник радиального типа оказалась менее вариабельной, чем через гидроциклон, в широком диапазоне концентраций TSS на входе. Эффективность гидроциклона, однако, сильно коррелировала с концентрацией загрязнений на входе. Вариабельность для него составила 50% (коэффициент детерминации, r2). Значимое взаимодействие членов в тесте ANCOVA продемонстрировало, что коварианта важна для эффективности удаления частиц гидроциклоном, но не отстойником радиального типа. Иными словами, неважно сколько загрязнений поступило в отстойник радиального типа, его эффективность останется прежней.

Зависимость эффектвности удаления твердых частиц (TSS) от концентрации TSS в потоке, поступающем в отстойнк радиального типа и гидроциклон


Коэффициент регрессии (0.089) для отстойника радиального типа не был статистически значим (P= 0.39). Коэффициент регрессии для гидроциклона (1.571) был статистически значим (P<0.001).

Нагрузка на единицу поверхности (удельная нагрузка) для обоих аппаратов составила 0.0031 м3/сек потока на квадратный метр. Для сравнения, IDEQ (1998) опубликовал руководство, где рекомендовалась удельная нагрузка:

— 0.00046 м3/сек потока на квадратный метр поверхности для обработки потока промывочной воды в автономных отстойниках

— 0.0040 м3/сек потока на квадратный метр поверхности для обработки стока из системы

— 0.0095 м3/сек потока на квадратный метр поверхности для обработки потока, покидающего канал через его застойную зону.


Удельная нагрузка в эксперименте была чуть меньше (т.е. более консервативной), чем рекомендована для полнопоточных бассейнов отстойников, и в три раза меньше, чем рекомендована для застойной зоны каналов. Она в 6.8 раза больше (т.е. более агрессивна), чем значения, рекомендованные для автономных отстойников. Тем не менее, автономные отстойники сталкиваются с потоками различной силы (высоко-вариабельными) и высокими флюктуациями концентраций, которые не отмечаются в условиях УЗВ. Относительный консерватизм удельной нагрузки в настоящей системе обусловлен стремлением максимизировать удаление TSS из относительно слабого, но концентрированного потока от донного дренажа. Более высокая удельная нагрузка на аппараты отстойники, как ожидается, приведет к некоторому снижению эффективности захвата TSS. Veerapen с коллегами (в прессе) докладывал, что удельная нагрузка на гидроциклон на уровне 0.0015 м3/сек потока на квадратный метр зоны осаждения позволяет поддерживать эффективность удаления модельных загрязнений 42-53%. Eikebrokk и Ulgenes (1993) не акцентировали внимание на удельной нагрузке, но докладывали о том, что гидроциклон в среднем удаляет 71% TSS, когда обрабатывает донный дренаж цилиндрического бассейна. В этой проточной системе выращивалась молодь Атлантического лосося. Стоит отметить, что эффективность удаления TSS в условиях ухода воды через донный дренаж, как ожидается, будет слегка выше в протоке, чем в рециркуляционной системе. Это связано с накоплением тонкодисперсных частиц в УЗВ, которые слишком медленно оседают, чтобы быть удаленными аппаратами отстойниками.

Теоретически, аппараты отстойники в аквакультуре должны быть способны захватывать большинство осаждаемых частиц, поступающих в них. Кроме того, эффективность захвата TSS гидроциклоном может быть улучшена при использовании оптимального патрубка для выходного потока и при более низкой удельной нагрузке.

Гидроциклоны традиционно использовались для удаления из городских и промышленных стоков песка и сыпучих веществ с высокой специфической плотностью. В данной работе гидроциклон захватывал все медленно тонущие загрязнения корма (скорость оседания 14-18 см/сек). Однако фекалии радужной форели имеют специфическую плотность, очень близкую к плотности воды, поэтому в свежем виде они оседают с очень низкой скоростью (0.7-4.3 см/сек), в зависимости от размера и плотности. Медленно оседающие загрязнения образуются, если рыба не образует компактных каловых масс, если каловые массы распадаются при перемещении из бассейна через трубы, либо, если твердые частицы представляют собой обособленные биопленки. В ходе описанного исследования иногда образовывались «диарея-подобные» каловые массы, и некоторые частицы представляли собой плохо оседающие обособленные биопленки. Кроме того, на неадекватных гидравлических режимах осадок может взмучиваться в отстойнике (попавшей туда рыбой, либо газообразованием микробного сообщества на дне конуса). Например, нечастное «пузыряние» наблюдалось в обоих типах аппаратов отстойников и приводило к всплытию твердых загрязнений.

Слабым местом исследования явилось отсутствие данных о размере и плотности частиц, поступающих в отстойники в ходе экспериментов. Анализ размера и плотности помог бы определить, эквивалентные ли частицы поступали в гидроциклон и отстойник радиального типа. Это необходимо для того, чтобы провести справедливое сравнение. Не исключено, что «диарея-подобные» фекалии присутствовали только в экспериментах с гидроциклоном, поэтому он показал худшие результаты. К счастью, регистрировалась относительная осаждаемость TSS, образуемых в ходе двух экспериментов, т.е. фракционирование TSS между дном культурального бассейна и пристеночным дренажем. Таблица 1 демонстрирует, что фракционирование TSS между дном культурального бассейна и пристеночным дренажем примерно эквивалентно в экспериментах с гидроциклоном и отстойником радиального типа, и составляет 6.2±0.7 и 7.3±0.8, соответственно. Поэтому, осаждаемость TSS не сильно отличалась в двух сериях экспериментов, т.е. результаты сравнения справедливы.

Удаление TSS через микросетчатый барабанный фильтр

Концентрация TSS, поступающая в микросетчатый барабанный фильтр составляет 3.2±0.3 мг/л и 4.5±0.6 мг/л в экспериментах с гидроциклоном и отстойником радиального типа, соответственно. Эта относительна низкая концентрация TSS на входе фильтра обуславливала относительно низкую эффективность захвата TSS – 28.6±3.7% и 31.9±3.4% в экспериментах с гидроциклоном и отстойником радиального типа, соответственно.

Сброс TSS из системы

В полностью замкнутой системе имеется три места, где осуществляется сброс загрязнений:

1. Один или два раза в день вручную сливался осадок из конуса отстойников;

2. Непрерывный сброс воды через переполняемый отстойник;

3. Сброс воды после обратной промывки барабанного фильтра.

С целью определения количества TSS, удаляемого из рециркуляционной системы в зависимости от количества вносимого корма, проведены расчеты баланса масса. Кроме того, баланс масс рассчитан в процентах.

В обоих экспериментах примерно 21.6-22.7% корма удалялось из системы как TSS загрязнения. Баланс масс показывает, что гидроциклон удаляет примерно 23%, а отстойник радиального типа 48% от всей массы TSS. Эти результаты указывают на то, что в гидроциклоне основная часть загрязнений находится во взвешенном состоянии и направляется через водослив, а не оседает на дно конуса. Микросетчатый фильтр задерживал примерно 40-45% всей массы TSS. В обоих случаях, результаты показали важную роль барабанного фильтра в очистке воды. Оставшаяся часть TSS сбрасывалась из системы и составляла 32% от общей массы TSS, удаляемой из системы, когда работал гидроциклон, или 12% — когда работал отстойник радиального типа. Стоит отметить, что масса сбрасываемых таким образом загрязнений была выше, когда была относительно высокой концентрация выходящих из отстойников TSS, т.е. 9.6±0.5 мг/л (работал гидроциклон). Сброс загрязнений через перелив отстойников был снижен в три раза, если вода сбрасывалась через самп. В сампе насоса концентрация TSS составила 2.2-3.1 мг/л.

Отстойник радиального типа

Добро пожаловать на сайт FISH-AGRO | Инновационные технологии для разведения рыбы

Международная ситуация способствует развитию аквакультуры в России

Продолжающиеся проявления финансового кризиса и международная ситуация по отношению к России неизбежно отражаются на росте потребительских цен. Ожидается очередной рост цен на рыбу.

Тенденция последнего времени сделает рыбные фермы еще рентабельнее. При увеличении разнообразия в каналах сбыта, данный вид производства пищевой промышленности будет неуклонно расти.

Развитие аквакультуры в России может способствовать продовольственной безопасности и стабилизировать внутренние цены на рыбу.

Рыба всегда была одним из основных продуктов в рационе человека, оставаясь источником относительно дешевого белка для основной массы населения мира. На фоне растущего населения, также наблюдается резкое увеличение потребления.
Исследования консалтинговых фирм показали, что в результате скачка мирового населения почти на миллиард человек, в период с 2004 по 2014 год суммарное потребление рыбы выросло с 104,5 млн. 146,3 млн тонн. На душу населения это в среднем с 16,2 кг до 20,4 кг рыбы.

Требования к помещению со стороны СЭС

Требования к помещению со стороны СЭС (роспотребнадзора).Это нужно знать для выбора помещения.

Со стороны Роспотребнадзора (СЭС) есть требования к помещениям рыбопереработки, связанные с гигиеной помещения, наличием санитарной обработки персонала (раздевалки грязной и чистой зоны, душевые), наличием рабочей одежды, санитарной обработкой оборудования для рыбопереработки, технологической цепочки движения сырья (нельзя, чтобы потоки сырья пересекались с потолками готовой продукции), утилизации отходов рыбопереработки.

К выращиванию рыбы в УЗВ имеет отношение только ветеринарная служба (РайСББЖ), так как она осуществляет взаимодействие с животноводческими фермами, а рыбоводство отнесено к животноводству.

На самом деле, все ограничивается заключением договора на обслуживание с РайСББЖ, а также соблюдении правил завоза мальков (получение разрешения на завоз мальков из благополучных хозяйств), карантинировании завозимого поголовья, и периодических проверках РайСББЖ на предмет соответствия работы фермы ветеринарному законодательству (любят рыбку кушать, запивая водочкой). В основном, РайСББЖ нужна лишь для оформления ветеринарных свидетельств при реализации рыбы.

Если будете делать переработку, тогда придется взаимодействовать с Роспотребнадзором, периодически предоставлять им образцы продукции на исследование (эти также обожают халяву).При размещении фермы основной момент - Санитарно Защитная Зона ( для фермы - 50 метров, для коптильного производства - 300 метров, если только разделка и посол без копчения - 50 метров) СЗЗ - это расстояние от фермы до жилья.

Поставка малька - рутинная операция. Если Вам нужно завести молодняк из другого региона, алгоритм работы следующий:

1 .Вы пишите письмо в Вашу  РайСББЖ, в котором указываете из какого региона, и какого хозяйства собираетесь завезти молодь.
2. РайСББЖ, получив Ваше письмо, оформляет свое письмо в Управление ветеринарии Вашего Региона.
3. Управление Ветеринарии Вашего региона запрашивает Управление Ветеринарии региона, из которого Вы собираетесь завозить молодь, на предмет эпизоотического благополучия хозяйства - продавца молоди. 
4. Получив положительный ответ, они оформляют  Вам разрешение на завоз молоди с данного хозяйства.
Бюрократическая волокита, но это нужно делать обязательно, так как когда Вас соберется проверять Россельхознадзор ( в соответствии с планом проверок), первое, чем он  интересуется при проверке - наличие разрешений на ввоз.

Разведение рыбы в УЗВ. Рыборазведение в УЗВ

Разведение рыбы в УЗВ

Сегодня большинство предпринимателей пересмотрели свое отношение к сельскому хозяйству, и благодаря этому его самые различные отрасли стали стремительно развиваться. Одним из направлений, которое в последнее время стало расти довольно активно, является рыбоводство. К сожалению, суровый климат нашей страны, часто был препятствием для быстрого роста этого перспективного и прибыльного сегмента, и разведение рыбы традиционным способом в прудах было невозможным в некоторых регионах России. Но сейчас существуют технологии, позволяющие минимизировать воздействие окружающей среды на рост рыбы.

УЗВ. Установка замкнутого водоснабжения

Одной из наиболее перспективных технологий выращивания рыбы является – УЗВ (установка замкнутого водоснабжения). Ее технологические возможности позволяют выращивать рыбу круглогодично, избегая при этом массовой гибели мальков или взрослых особей. Ко всем достоинствам метода разведения рыбы в УЗВ, можно отнести тот факт, что выход товарной рыбы с метра площади по сравнению с традиционным способом увеличивается в несколько раз. Установить УЗВ можно где угодно, в то время как обычный пруд будет зависеть от рельефа местности и наличия грунтовых вод. 

Как происходит разведение рыбы в установках замкнутого водоснабжения:
Рыбу поселяют в специальный бассейн, в котором установлены различные приборы для поддержания оптимального уровня всех важных для жизнедеятельности рыб компонентов. Чтобы рыбы не болели, и их жизненный цикл не нарушался, вода должна регулярно фильтроваться и обогащаться кислородом. Такие условия имитируют естественные, сохраняя здоровье рыб и не сказываясь негативно на их размножении Для конкретного вида рыбы должен поддерживаться определенный температурный режим. Такие манипуляции стимулируют рыбу потреблять больше корма, а это в свою очередь положительно влияет на скорость роста мальков. 

Составляющие УЗВ:
Как уже говорилось, комплекс УЗВ для успешного функционирования должен состоять из нескольких компонентов. Чаще всего необходимы бывают следующие технические элементы:
Бассейн
Механические фильтры
Оборудование для денитрификации
Биофильтры
Насосы
Обеззараживание
Подогрев воды
Оксигенератор 

Все эти компоненты крайне важны для нормальной работы установки, потому что правильно подобранное, бесперебойно функционирующее оборудование – это залог успешной работы всей системы. 

Бассейн. Это основной компонент комплекса УЗВ, потому что именно с его установкой и размещение связаны основные хлопоты по разведению рыб. Бассейны бывают трех типов. Наиболее распространены круглые, так как что они удобны и просты в эксплуатации из-за их эргономичной формы. В них возникают потоки воды, похожие на те, что имеются в естественных условиях, которые способствуют лучшему ее очищению. Также работают и овальные и квадратные бассейны. Благодаря улучшенной рециркуляции загрязненная вода почти сразу убирается из резервуара. Эти три формы лучше всего подходят для разведения рыб в условиях УЗВ. Прямоугольные бассейны самостоятельно практически не очищаются. При этом они неплохо экономят площадь. Если место в крытом помещении ограничено, то, установив прямоугольный бассейн, можно сэкономить пространство. 

Механические фильтры. Отработанную воду, которая губительна для здоровья рыб, необходимо очищать от взвешенных в ней частиц. Поэтому сразу жидкость с продуктами их жизнедеятельности попадает в механический фильтр. Чаще всего используют фильтр барабанного типа, он наиболее прост и надежен в эксплуатации. Конечно, для повышения эффективности работы, его нужно периодически промывать. Чтобы структура частичек воды не была нарушена и соответствовала биологическим показателям, необходимо обеспечить подачу воды к фильтру самотеком. Такой способ не вызывает разрушения частиц находящихся в воде и способствует лучшей ее очистке. 

Биологические фильтры. В воде бассейна накапливается множество вредных веществ, которые могут погубить все поголовье рыб, при большой концентрации. К таким соединениям относятся аммонийный азот. Он образуется вследствие жизнедеятельности рыб и разложения остатков корма. Для их удаления вредных компонентов, в воду помещают в специальный резервуар. На размещенных в воде элементах живут колонии бактерий, которые очищают воду. Это биологический способ очистки, который так же безопасен для жизнедеятельности рыб. Чтобы и бактерии чувствовали себя хорошо и имели возможность питаться, вода подвергается аэрации. Таким образом, очистка заметно ускоряется. Кроме того, кислородом также удаляются излишки углекислого газа. 

Насосы. Для нормальной циркуляции воды, необходимо обеспечить забор отработанной жидкости и приток свежей чистой воды. Для этих целей применяют насосы. В среднем к каждой порции воды выбранной из резервуара с рыбой необходимо добавлять 5-15 % свежей воды. Эти расчеты довольно приблизительны, поэтому рассчитывать соотношение вод необходимо в индивидуальном порядке. 

Денитрификация. При содержании рыбы, особенно осетровых пород, в воде скапливается излишки нитратов. Для снижения концентрации нитратных соединений в воде применяются определенные меры. Это может быть как вливание каждые сутки определенного объема свежей воды, так и пропускание использованной воды через денитрификатор. Принцип работы денитрификатора мало чем отличается от обычного биофильтра. Разница в том, что относится к фильтрам закрытого типа. Бактерии, которые живут в фильтре, разлагают нитраты на свободный азот. А он в свою очередь, будучи инертным газом, уже не вступает в реакции и выводится из воды. Процесс проходит при подпитке воды углеродами. Конечно, пропускная способность такого фильтра невысокая. Именно поэтому через него пускают только часть потока воды. Однако это дает возможность поддерживать уровень нитратов в воде на необходимом биологическом уровне. 

Обеззараживание. В большинстве УЗВ комплексов используется двухступенчатое обеззараживание воды с переменным применением двух методов очистки. Сначала производится облучение ультрафиолетовыми лампами. На втором этапе вода озонируется. Все эти манипуляции максимально снижают вероятность попадания в бассейны опасных микроорганизмов. 

Подогрев и оксигенация. В процессе очистки вода охлаждается, поэтому перед подачей в резервуар с рыбой ее следует нагреть до необходимой температуры. Также требуется обогатить воду кислородом. В воде, которая насыщена кислородом рыба меньше тратит энергии на процесс дыхания и следовательно быстрее растет. 

Кормление. От питания напрямую зависит рост рыбы. В комплексах УЗВ применяют высокопитательные комбикорма. Состав кормов подбирается исходя из породы рыб. Кормление производится со специальных столиков. 

Виды рыб для разведения в установке замкнутого водоснабжения. 

Выгоднее всего в УЗВ разводить дорогостоящие или деликатесные виды рыбы. Чаще всего это осетровые и лососевые породы, а также африканский сом и тилапия. На них всегда бывает большой спрос, особенно если устанавливается конкурентоспособная цена. 

Разведение форели в УЗВ. Эта пресноводная рыба прекрасно чувствует себя в чистой проточной воде. При правильном кормлении форель дает наибольший выход готовой продукции среди других видов лососевых рыб. 

Русский осетр в УЗВ. Этот вид рыбы также можно выращивать в закрытых системах. Самое основное требование - это чистая и насыщенная кислородом вода. При разведении русского осетра в установке замкнутого водоснабжения могут быть два направления работы. Можно выращивать рыбу для получения мяса. Или работать на икру. Второй способ хотя и занимает больше времени, но зато рентабельность у него выше. 

Прочие осетровые виды. Помимо классического осетра в УЗВ отлично выращиваются и остальные родственные ему виды. Они также отличаются хорошим ростом при соблюдении технологий, которые обеспечивают максимально благоприятные условия. Также цена килограмма продукции делает эту работу крайне выгодной. 

Другие виды рыб. Помимо перечисленных видов технологии УЗВ позволяют выращивать практически все лососевые. Неплохо растут сиговые виды (пелядь, муксун, чир). Все они, правильном ведении бизнеса, могут быть очень рентабельными. 

Заключение. Выращивание рыбы с помощью УЗВ – это современный способ получения экологически чистой продукции. В условиях дефицита охлажденной пресноводной рыбы на рынке бизнес, использующий технологию разведения рыбы в установках замкнутого водоснабжения, обречен на успех.

Проектирование технологического процесса и подбор оборудования для УЗВ

АРМ УЗВ -Автоматизированное Рабочее Место Установок Замкнутого Водоснабжения...а Вы что подумали?

Зайдите на сайт нашей компании WWW.FISH-AGRO.RU и Вы откроете для себя целый океан возможностей, которые открывает технология интенсивного рыбоводства с использованием УЗВ.

УЗВ позволяет выращивать огромное количество различных видов рыб и моллюсков, причем не только пресноводных, но и обитающих в Мировом океане.

Это уникальная  возможность выращивать  здоровую, экологически чистую рыбу, так как в результате хищнического отношения человечества к природе,  естественная среда содержит весь спектр изотопов и солей тяжелых металлов, которые накапливаются в рыбе.

Рыбу, выращенную в природе, лишь условно можно назвать «полезной для здоровья», да и запасы этой рыбы почти исчерпаны, многие виды находятся на грани физического истребления.

Технология УЗВ позволяет в десятки раз увеличить объемы выпускаемой в природу молоди ценных рыб для восстановления естественной популяции.

УЗВ дает возможность создания живорыбных баз вблизи мегаполисов для обеспечения жителей живой рыбой, а не мерзлыми кусками неизвестного происхождения, или  дефростированной «охлажденкой».

При размещении  установок УЗВ в Высших Учебных Заведениях, появляется возможность к прекрасной теоретической подготовке  добавить  незаменимые практические навыки работы в аквакультуре, выпускать дипломированных специалистов с опытом эксплуатации УЗВ.

Одновременно появляется возможность для проведения научных исследований для аспирантов и преподавателей кафедр аквакультуры в Университетах.


Назад Вперед
Наверх
+7(977) 276-99-23   fish-agro@mail.ru
 

Уважаемые посетители!
Мы рады приветствовать Вас на сайте
Fish-Agro -Технологии и оборудование,.
Рыборазведение в УЗВ

Бизнес УЗВ

Рыборазведение в УЗВ

Барабанные фильтры

Рыборазведение в УЗВ

Бассейны

Рыборазведение в УЗВ

Озонаторы

Рыборазведение в УЗВ

Экструдеры, корма

Рыборазведение в УЗВ

Рецепты блюд

Рыборазведение в УЗВ