FISH-AGRO | Оборудование для разведения рыб
Технологии, проекты и оборудование для разведения рыбы в УЗВ. Рыбоводство и рыба разведение в Установках Замкнутого Водоснабжения! Тилапиа, Клариевый Сом, Осетр, Форель.

Требования к воде для осетра и форели

У меня часто спрашивают, какие требования к воде для разведения рыбы. Есть такой ГОСТ "Вода для рыбных хозяйств". Выкладываю требования для осетра и форели.

Про водообмен в УЗВ

Водообмен - совокупность физических процессов, приводящих к смене воды в водном объекте , замещению одних водных масс, находящихся в нем, другими водными массами (с иными свойствами), поступающими в него из сопредельных объектов.

Водообменом в установках замкнутого цикла (далее УЗВ) принято считать скорость прохождения полного цикла воды в системе жизнеобеспечения обитателей системы, т.е. за какой промежуток времени насос (помпа) произведет полную откачку воды из области содержания гидробионтов через систему фильтрации. То есть если суммарное количество воды в системе составляет 2000 литров (включая трубопроводы, систему фильтрации и непосредственно емкость содержания) а производительность насоса составляет 4000 литров в час, то принято принимать скорость такого водообмена равную двукратному обмену воды в час.
Скорость водообмена в УЗВ при расчетах стараются обеспечить в диапазоне от 1 до 4, связано это с гидрохимией воды и экономическими показателями. При скорости водообмена менее единицы, вредные элементы (аммоний, нитраты, нитриты и др.) имеют высокую скорость накопления в системе, что вызывает гибель обитателей УЗВ, при высоких значения величины водообмена в системе замкнутого цикла вода циркулирует в системе вызывая только негативные явления: течение, повышенный удельный расход электроэнергии и перемешивание взвешенных частиц. Расход электроэнергии и перемешивание взвешенных частиц не выпадающих в осадок сказываются на себестоимости продукции. Поэтому при проектировании и эксплуатации УЗВ стоит придерживаться правила разумной экономии.
Рассмотрим негативные явления, связанные с высоким течением воды в емкостях с гидробионтами. Высокая скорость протекания жидкости негативно отражается как в аквариуме с рыбками так, например и с крабами или лангустами в промышленных УЗВ. Повышенный поток заставляет обитателей сопротивляться потоку жидкости, а как следствие биохимические реакции в тканях ускоряются, что приводит к повышенному расходу энергии. При недостатке белкового корма происходит истощение и как следствие гибель обитателей. В системах промышленной передержки в течении длительного времени происходит уменьшение веса, но наиболее негативный фактор связан с ослабленностью гидробионтов, что приводит к сокращению времени выживания в неестественной для них среде.
Высокая величина водообмена в системе фильтрации также оказывает негативное влияние на протекание процессов очистки:  в механическом фильтре высокая скорость протекания жидкости снижает эффективность за счет турбулентности потока, взвешенные частицы перемешиваются и требуется фильтр механической очистки с меньшим по диаметру проходным сечением. В химическом фильтре сокращается время контакта очищающего субстрата с нежелательными элементами, в биологическом фильтре скорость потока жидкости наиболее важная величина она составляет 4 литра в секунду на 1 квадратный метр поверхности субстрата очистки. Выведенная в 1966 году японским исследователем К. Хироямой для гравийных аквариумных фильтров в которой в левой части неравенства окислительная способность фильтра (ОСФ) определяется мг  О2/мин;  в правой части выражается нагрузка на фильтр со стороны водных организмов,  мг О2/мин.  

Формула (К.Хироямы)  расчета мощности биологического фильтра

      где:  
Wi- площадь поверхности фильтра, м3;
Vi - скорость тока воды через фильтр, см/мин;
Gi - коэффициент размера гравия;
Di - толщина слоя гравия, см;
р - количество фильтров, обслуживающих аквариум;
В i - масса отдельного животного, г;
Fi - средняя масса пищи, потребляемая ежедневно одним животным, г;
g - число животных в аквариуме.
Gi - коэффициент размера гравия - определяется по формуле:

Формула расчета коэффициента гравия

где:
Rk - средний размер каждой фракции гравия, мм;
Хk - процентное соотношение массы каждой фракции.

При высоких скоростях омывания поверхности субстрата поток воды не позволяет закрепиться колонии бактерий, как следствие скудная колония бактерий на достаточно большой площади поверхности.
Низкая скорость водообмена еще более негативно сказывается на протекании жизнеобеспечивающих процессов: отсутствие движения потока непосредственно в области обитания гидробионтов приводит к образованию застойных зон, в которых накапливаются вредные элементы, в таких участках отсутствует растворенный кислород и концентрация аммония нитратов и нитритов превышает допустимую концентрацию,  невысокая скорость омывания поверхности субстрата приводит отсутствию питания для аэробных бактерий и как следствие минимальная популяция, снижение растворенного в воде кислорода, одновременно при дыхании рыб в воде растет содержание диоксида углерода, изменяя при этом водородный показатель (рН) воды в сторону кислотности.
В промышленных установках замкнутого водоснабжения для разведения рыб показатель водообмена рассчитывается индивидуально на основании заданных условий. Основная цель водообмена поддержание концентрации веществ, влияющих на жизнедеятельность рыбы,  в заданном диапазоне значений. Во время расчета УЗВ определяют предельные допустимые концентрации кислорода, аммонийного азота, углекислого газа, нитратов и нитритов, а также взвешенных веществ и оценивают рабочие параметры системы подготовки воды. Затем для всех предельных допустимых концентраций отдельно рассчитывают значение водообмена, которое позволит поддерживать предельную концентрацию. В итоге расчета выбирают предельно допустимое значение, относительно которого будут рассчитываться остальные параметры. Водообмен рассчитывают для каждого отдельного вещества на основании уравнения баланса масс, смысл которого сводится к равенству покидающих  бассейны веществ и сумму поступивших, произведенных и потребленных веществ за единицу времени. Расчет по кислороду при заданной минимальной концентрации  и подготовке воды в оксигенаторе  при содержании рыбы c выбранным максимальным удельным потреблением (для каждого вида рыб выбирается по справочнику) с использованием уравнения баланса масс будет выглядеть в формульном представлении следующим образом:

 О2’ * V – N * NO2   = О2 * V

где:
О2 – минимальная концентрация кислорода в воде, мг/л;
О2’ – концентрация кислорода в блоке водоподготовки (оксигенаторе) мг/л;
N – масса рыбы в системе жизнеобеспечения кг;
NО2 – максимальное удельное потребление кислорода г/час;
V – скорость водообмена л/час;


Выбирая по справочнику предельные концентрации по аммонийному азоту, определяем выбранные значения. Исходя из расчетов поверхности биофильтра, принимаем  значение эффективности работы  блока биологической очистки. Подставим данные в уравнения баланса масс которое примет вид:

NNOx” * V + NNOx‘ * N = NNOx * V

где:
NNOx – предельно-допустимая концентрация аммонийного азота в воде, мг/л;
NNOx’ – предельное значение выделение аммонийного азота рыбой г/ч;
N – масса рыбы в системе жизнеобеспечения кг;
V – скорость водообмена л/час;


NNOx”= W” * NNOx

где:
W” – эффективность работы биологического фильтра;
NNOx – предельно-допустимая концентрация аммонийного азота в воде, мг/л;
NNOx” – значение концентрации аммония в системе после биологического фильтра  г/час;


Проведя расчет по всем основным показателям выбираем определяющий минимальный расход воды в системе оборотного водоснабжения и проводим пересчет других показателей приводя к полученному значению минимального расхода воды.

Рыба для сильного иммунитета

Рыба для сильного иммунитета

Помимо занятий спортом и соблюдения правил гигиены, особенно важно употреблять продукты питания, богатые необходимыми питательными веществами и витаминами.

В сложившейся ситуации пандемии рекомендуется есть жирные сорта рыбы: скумбрию, сельдь и др.
? При регулярном употреблении рыбы улучшится работа иммунной системы.

Морепродукты содержат колоссальное количество цинка и селена.
?Цинк способствует повышению числа клеток Т-звена иммунной системы, а также натуральных киллеров. В результате повышается способность организма к фагоцитозу любых чужеродных агентов (бактерий и вирусов). Известно, что отличным источником цинка являются креветки, мидии, кальмары, раки, устрицы, крабы.
?Селен необходим для стимуляции выработки в красном костном мозге молодых клеток лейкоцитарного звена, что подтверждено научно. Селеном богаты мидии, осьминоги, морская капуста, крабы, устрицы, омары, тунец.
?Одно из исследований, проведённых в 2008 году, доказало, что сочетание цинка и селена способствует усилению эффекта каждого из микроэлементов.

Также результаты других исследований показывают, что питание с достаточным содержанием белков укрепляет иммунитет, поэтому сейчас важно ежедневно потреблять богатую данным элементом рыбу.

Подготовка Морской воды

Подготовка морской воды -  процесс приготовления раствора для заданных нужд.

Химический состав морской воды

Подготовка Морской воды

Морская вода -  химическое вещество в виде прозрачной жидкости, не имеющей цвета (в малом объёме) и запаха. Состав морской воды насчитывает более 75 элементов таблицы Менделеева. Основные элементы: кислород - 857000  Мг/л, водород – 108000 Мг/л, хлор  - 19000 Мг/л, натрий 10721 Мг/л, магний – 1350 Мг/л, сера – 901 Мг/л, кальций – 410 Мг/л, калий – 398 Мг/л, бром – 67.
Соленость мирового океана составляет 35‰, с колебаниями от 12-13‰ в Каспийском море,  17-18‰ на поверхности и 22-23‰  на дне Черного моря и 40‰ в водах Красного моря. Плотность морской воды колеблется в пределах от 1020 до 1030 кг/м?. Показатель кислотности pH лежит в пределах от 7,5 до 8,4. Скорость звука — около 1500 м/с.
Научное обоснование появлению солёной воды в море было положено работами Эдмунда Галлея в 1715 году.

Подготовка морской воды заключается в нескольких простых этапах: механическая очистка (очистка воды в зависимости от применяемой системы очистки от твердых  частиц   диаметром от 50-100 микрон). Наличие в воде твердых частиц подразумевает химическую реакцию элементов входящих в состав морской соли с этими частицами. Для этого используют разного рода фильтры, которые могут быть: песочными, сетчатыми, картриджными и другими.

Химическая очистка заключается в удалении из подготавливаемой воды химических элементов, например хлора, для этого воду пропускают через слой активированного угля, поскольку он является отличным абсорбентом. Ресурс таких картриджей существенно ограничен и требует регенерации активированного угля или его замены.

Обратноосмотическая фильтрация заключительный этап в подготовке при приготовлении соляного раствора морской воды. Суть методы очистки заключается в  прохождении воды через мембрану из более концентрированного в менее концентрированный раствор в результате воздействия давления, превышающего разницу осмотических давлений обоих растворов. Диаметр ячеек мембраны  сопоставим по размерам с размерами молекулы воды, поэтому степень очистки таких фильтров очень высока. Качественные фильтрующие мембраны, способны освободить воду от 99% примесей. Диаметр пор составляет около 0,0001 микрона.

Рассмотренные методы очистки являются основными необходимыми при подготовке воды, хотя в некоторых случаях этого может оказаться недостаточно. Качество исходной воды существенно влияет на систему водоподготовки, в отдельных случаях могут потребоваться фильтры на основе ионообменных смол, УФ-стерилизации, озонирования и др.

При приготовлении морской воды руководствуются правилом 1  грамм морской соли на 1 литр пресной воды для достижения солености 1‰ промилле.  Важно учитывать способность морской воды к расслоению, поэтому для сохранности своих качеств морская вода всегда должна находиться в движении.

Теплообмен в УЗВ

  • Теплообмен – самопроизвольный необратимый процесс переноса теплоты в пространстве, обусловленный неоднородным полем температуры. В общем случае перенос теплоты может также вызываться неоднородностью полей других физически величин, например разностью концентраций (диффузионный термоэффект). Различают 3 вида теплообмена: теплопроводность, конвекция и лучистый теплообмен (на практике теплообмен обычно осуществляется всеми 3 видами сразу). Теплообмен определяет или сопровождает многие процессы в природе (например, ход эволюции звёзд и планет, метеорологические процессы на поверхности Земли и т. д.), в технике и в быту. Во многих случаях, например при исследовании процессов сушки, испарительного охлаждения, диффузии, теплообмен рассматривается совместно с массообменом. Теплообмен между двумя теплоносителями через разделяющую их твёрдую стенку или через поверхность раздела между ними называется теплопередачей.      
  • Теплопередача - самопроизвольный необратимый процесс переноса энергии от более нагретых тел или участков тела к менее нагретым.

 

Теплообмен в УЗВ

В системах УЗВ теплообмен играет  важную роль в биосистемах разного уровня. В небольших системах жизнеобеспечения, например в небольших аквариумах домашнего типа ключевой фактор производительность энергосберегающей установки не влияет особенно на карман потребителя если говорить о нагреве за счет нагревательных элементов, поставил обогреватель и никаких проблем. Современные обогреватели снабжены датчиком температуры, который можно установить на заданную величину, при этом на текущем уровне развития цивилизации такие обогреватели стоят буквально копейки. В отличии от средних и больших проектов УЗВ теплообмен по степени рентабельности играет чуть ли не ключевую роль. Нагреть «акулятник» на три тысячи литров задача более чем простая, даже при поддержании температурного режима плюс минус 0,5 градуса. Другое дело охладить три тысячи литров воды в техническом помещении скажем до 6 градусов Цельсия плюс минус один градус.

     Рассмотрим маленькие системы аквариумного типа, нагрев (или охлаждение в зависимости от температурной константы помещения)  воды происходит в основном от взаимодействия с воздухом, стекло является не плохим теплопередающим  материалом, если конечно стенки аквариума не двойные, работающий элемент насосов, помп, ламп освещения, да и непосредственный контакт воды с воздухом нагревают систему, даже если аквариум с холодноводными гидробионтами зачастую охладители намного производительнее чем потребности небольшого аквариума. В таких системах эстетическое восприятие биосистемы намного важнее, чем, если рассматривать УЗВ промышленного объема в которых каждый градус воды достигается за счет вложения в производственные средства не одну тысячу условных единиц.   

     В отличии от домашних аквариумов в промышленных системах теплообмен является важной составляющей в общей сметы рентабельности проекта направленного на конечную цель. В условиях промышленного содержания или воспроизведение гидробионтов борьба идет за каждый отмотанный киловатт на счетчике.

     Рассмотрим пример производственного цеха в котором среднегодовая температура 18 градусов Цельсия, емкости представляют из себя бетонную кладку  выложенную на фундаменте цеха, почти идеальные условия при которых вложения в производственные чиллеры будет минимальной. Теплопередачу в таких условиях считаем лишь только от поверхности воды контактирующем с воздухом, и системы трубопроводов плюс незначительный нагрев от перекачивающих помп и других элементов УЗВ в которых принцип действия основан на электрическом токе. В такой идеальной системе поддержание скажем 10 градусов Цельсия не представляется особой сложностью, достаточно средний охладитель за весьма не высокие вложения запросто справиться с поставленной задачей. Но не все так просто позвольте заметить, идеальность встречается крайне редко (при проектировании этот фактор нужно учитывать в составе ключевых)  а зачастую мы сталкиваемся с колебаниями температуры в помещении, в основном играет роль фактор сезонности, зимой холодно летом жарко, и это важный фактор в выборе расположения УЗВ. Теперь рассмотрим пример когда УЗВ расположена в помещении температура в котором колеблется от +16 до +25, емкости выполнены из пластмассы или стекла, в таких условиях затраты на производственный охладитель резко возрастают, увеличивается его мощность а как следствие среднесуточный расход электроэнергии и т.д. При проектировании цеха и выборе охладителя следует учитывать вышеизложенные параметры системы. Прием при котором можно существенно сэкономить затраты заключается в изоляции теплопередающих конструктивных элементов УЗВ. Теплоизоляция непосредственно емкостей, трубопроводов и других конструктивных элементов. Понижении суточной температуры воздуха непосредственно в помещении где расположена УЗВ. А также действиями направленными на сохранении тепла в производственном цехе за счет исключения поступления тепла или холода в цех (ограничение доступа персонала или расположение необходимых средств труда непосредственно в цехе УЗВ).  В небольших помещениях с резкими колебаниями среднесуточной температуры существенное сокращение затрат на охладитель можно достичь за счет установки  кондиционирования воздуха.

Гидрохимия - раздел геохимии

Гидрохимия - раздел геохимии, рассматривающий химический. состав естественных вод (морских, озёрных, речных, подземных и атмосферных), свойства этих вод при различном составе растворённых веществ, происхождение растворов, характер и режим происходящих в них реакций.

Важными показателями воды с точки зрения рыбоводства являются:
- солевой состав;
- растворённый кислород;
- рН;
- аммонийный азот в связи с рН;
- нитриты и нитраты;
- БПК и органические загрязнения;
- железо и тяжёлые металлы.

1. Солевой состав воды.

Солевой состав морской воды рассмотрен в соответствующем разделе по морской воде.  Однако, пресная вода также содержит соли, которые имеют значение для использования этой воды в рыбоводстве. Соли натрия и хлора, в пресной воде, значения не имеют, но соли кальция и магния важны. Прежде всего, следует отметить, что слабоминерализованная вода или вода, обессоленная обратным осмосом, не пригодна для питания УЗВ. Это связано с тем, что такая вода не обладает свойством т.н. буферности, т.е. свойством сохранять свой водородный показатель рН при добавление незначительных количеств кислоты. В УЗВ постоянно происходит процесс окисления аммонийного азота, выделяемого рыбой, в нитрат, что эквивалентно добавлению в воду небольших количеств азотной кислоты. Если вода содержит достаточное количество гидрокарбонатов и других подобных ионов, то они будут нейтрализовать эту кислоту и рН воды заметно не изменится. В случае слабоминерализованной воды рН быстро упадёт, вода станет кислой и непригодной для рыбоводства, кроме того скорость биологического окисления иона аммония в нитрат-ион начнёт замедляться.
С другой стороны, слишком жёсткая вода вредна для рыбы и создаёт повышенную нагрузку на её органы выведения (почки). Кроме того, применение слишком жесткой воды может вызвать засорение осадками солей кальция микроэкранов барабанных фильтров, вентилей и т.п. Подходящая жёсткость воды для питания УЗВ или СОВ находится в переделах 2 – 8 мг-экв./л, тогда как для питания систем, более близких к прямоточным, подходит вода и с меньшей жёсткостью. Вода с жёсткостью более 10 мг-экв./л потребует дополнительного умягчения.

2.  Растворённый кислород.

В артезианской воде, используемой для питания УЗВ или СОВ растворённого кислорода нет и он вводится в неё искусственно при помощи аэрации и/или оксигенации. Однако, внутри самой УЗВ или СОВ, также как и в любой системе, использующей природную прямоточную воду (сетчатые садки, пруды, бассейны и т.п.), растворённый кислород является важнейшим показателем, обуславливающим успех производства. Для успешного выращивания практически любой рыбы (кроме рыб, способных дышать кислородом воздуха, таких как клариевые сомы) концентрация кислорода должна находится в т.н. «зоне неограниченного роста», т.е. когда рыба не затрачивает никакой дополнительной энергии на обеспечение своего тела кислородом. Для большинства видов рыб нижний предел «зоны неограниченного роста» составляет 50 – 70% от насыщения (равновесия с атмосферным воздухом), причём если для карповых рыб ближе к 50%, то для лососевых 70%.  Если концентрация кислорода падает ниже, то рост рыбы замедляется, кормовой коэффициент (затраты корма на 1 кг прироста рыбы) увеличивается, и рыбоводство становится менее рентабельным. При повышении температуры выше оптимальных значений нижний предел сдвигается вверх, это связано как с уменьшением растворимости кислорода в воде, так и с увеличением его потребления при повышении температуры. Так, например, считается, что радужная форель может выдерживать до 230 С, тогда как выше, даже при близком к 100% насыщении воды растворённым кислородом, расход кислорода не компенсируется и начинается гибель. Применение оксигенации и насыщения выше 100% позволяет форели выдерживать эту и даже ещё немного более высокие температуры. С другой стороны, слишком высокие концентрации растворённого кислорода также нежелательны (см. Оксигенация)
Даже рыб, способных дышать атмосферным воздухом, например, клариевого сома, необходимо растить при минимальной концентрации растворённого кислорода, равной 2 мг/л. Это связано как с наличием т.н. «кожного дыхания», т.е. близкие к поверхности ткани снабжаются кислородом, поступающим снаружи, так и с тем, чтобы избежать каких-либо анаэробных процессов внутри рыбоводных емкостей и трубопроводов, при которых могут образовываться токсичные для рыб загрязнения воды.

3. Водородный показатель рН.

Водородный показатель – это обратный десятичный логарифм концентрации в воде водородных ионов. Полностью нейтральной воде соответствует рН = 7, если рН>7, то вода имеет щелочную среду, если рН<7, то кислую. Рыба может жить только в узком диапазоне рН в пределах 6 – 9.

Морская вода содержит много солей, в том числе и гидрокарбонаты и имеет рН 8,2 – 8,3. Благодаря высокому значению рН и большой буферности (см. выше) морская вода не подвержена «закислению» при работе в УЗВ. Но из-за её высокого рН морские гидробионты более чувствительны к иону аммония (см. ниже).

Если понятно, что высокие значения рН непригодны из-за выделения рыбой аммиака (см. ниже), то низкие значения делают воду непригодной из-за выделения рыбой свободной углекислоты СО2. В воде постоянно существует химическое равновесие

СО2+Н2СО3 o Н+ + НСО3- o 2Н+ + СО32-

Равновесие в щелочной среде смещается в правую сторону – связываются ионы водорода, а в кислой среде смещается в левую – концентрация ионов водорода повышается.
Зависимость соотношения свободной СО2 и связанной от рН отражена в таблице

значение рН

4

5

6

7

8

9

10

11

12

форма соединения

содержание соединения в % при 25*С

CO2 + H2CO3

100

95

70

20

2

-

-

-

-

HCO3\-

-

5

30

80

98

95

70

17

2

CO3\2-

-

-

-

-

-

5

30

83

98

 

Организм рыбы постоянно выделяет свободную углекислоту и при росте концентрации её в воде такое выделение осложняется. До какой-то концентрации свободной СО2 это может компенсироваться специальными механизмами организма рыбы, что потребует дополнительной энергии (и как следствие, увеличения кормового коэффициента), выше какой-то рыба начинает отравляться не выведенным из организма СО2.  В сооружениях очистки УЗВ значительная часть свободной СО2 удаляется  за счёт аэрации (уходит с прошедшим через воду воздухом в атмосферу). Тем не менее, часто в УЗВ, особенно высокотехнологичном, за счёт работы биофильтра рН падает. В этом случае приходится для его поддержания добавлять в воду вещества, имеющие щелочную природу (чаще всего соду NaHCO3  или известь Ca(OH)2)  или поддерживать воду в постоянном контакте с известняком для поддержания рН.

4. Аммонийный азот в связи с рН.

 Сам по себе ион аммония NH4+ не ядовит для рыб, как и случае с СО2, организм рыбы выделяет свободный аммиак NH3 через жабры. Выделение аммиака, как правило, прямо пропорционально количеству съеденного корма, обратно пропорционально  кормовому коэффициенту и зависит сильно от состава корма.
Аммиак и ион аммония находятся в химическом равновесии NH3 + H+ o NH4+, которое в  щелочной среде смещается влево – связывание ионов водорода, а в кислой вправо. Кроме рН сильно влияет температура. Зависимость соотношения свободного и связанного аммиака приведена в таблице. 

Температура

Содержание NH3 (в %) при значениях pH

°С

6,0

7,0

7,5

8,0

8,2

8,4

8,6

8,8

25

0,05

0,53

1,70

5,1

7,8

11,9

17,6

25,3

15

0,03

0,26

0,80

2,5

3,9

6,1

9,2

14,0

5

0,01

0,12

0,37

1,2

1,8

2,9

4,5

6,9

 

Концентрация свободного аммиака, с которой начинается угнетение большинства видов рыб составляет 0,05 мг/л. Исходя из этого, в типичном УЗВ-осетровнике при температуре 200 С и рН = 7,5 доля свободного аммиака от общего составит 1,2%, т.е. 0,012. Отсюда максимальная общая концентрация аммония может составлять 0,05/0,012 = 4 мг/л. Очевидно, что при большем рН или более высокой температуре меньше, да и держать постоянно вблизи критических значений нельзя, поэтому в УЗВ-осетровнике обычная концентрация общего аммония поддерживается в пределах 1 – 2 мг/л.

В морской воде при рН = 8,2 и той же температуре доля свободного аммиака составит примерно 5,8% или 0,058. В этих условиях максимальная концентрация аммония может составить  0,05/0,058 = 0,86 мг/л. Именно этот факт является причиной того, что биофильтры, созданные для работы на морской воде, всегда работают на пресной, тогда как биофильтры, созданные для работы на пресной воде, не обязательно смогут работать на морской. 

5. Нитраты и нитриты.

Считается, что нитраты NO3- для рыбы нетоксичны и она может выдерживать до1000 мг/л. Также считается, что нитраты не проникают в ткани рыбы и рыба, выращенная при высоких концентрациях нитратов не накапливает их в своих тканях. В типичных УЗВ такая концентрация нитрата обычно не достигается. В первую очередь за счёт их вымывания из системы, но в некоторых случаях значительное поглощение нитратов может происходить и на биофильтре (при определенной конструкции и режиме работы биофильтра) несмотря на высокое содержание кислорода там в воде. Тем не менее, в случае, если необходимо свети к минимум  (почти к нулю) водопотребление, необходимо предусматривать денитрификацию.

В отличие от нитратов, нитриты NO2- сильно токсичны для рыб. Часто нитриты называют «ядом крови», потому что они взаимодействуя с гемоглобином крови нарушают перенос кислорода к тканям. Признак длительного воздействия повышенных концентраций нитритов на рыб – изменения цвета жабр с ярко красных но почти коричневые. Предельно допустимой концентрацией нитритов считается 0,25 мг/л.

В УЗВ небольшие концентрации нитрита всегда присутствуют, это связано с двухступенчатым механизмом работы нитрифицирующей микрофлоры. При запуске биофильтров, как правило, на какой-то стадии случается «всплеск» нитритов. Это связано с тем что химическая реакция окисления  аммония в нитрит имеет значительно больший энергетический выход, чем химическая реакция окисления нитрита в нитрат, поэтому микрофлора, осуществляющая первую стадию нитрификации растёт намного быстрее.  В какой-то момент складывается ситуация, когда микрофлора, производящая нитриты уже выросла, а микрофлора, преобразующая нитрит в нитрат ещё нет. Бороться с первоначальным всплеском можно тем, чтобы нагрузка на биофильтр росла медленно, желательно, вместе с рыбой.

Нитриты легко окисляются в нитраты озоном, по этой причине озонирование является надёжным методом снижения концентрации нитритов.

5. БПК и органические загрязнения.

БПК – биологическое потребление кислорода. Обычно применяется показатель БПК5 – биологическое потребление кислорода за 5 суток. Этот показатель показывает, сколько кислорода нужно для биологического окисления органических загрязнений воды. Т.о. БПК показывает не просто сколько органических загрязнений содержится в воде, но и насколько они легко биохимически разрушаемы.  Само по себе БПК воды никак не влияет на рыбоводство, за исключением того что может потребоваться несколько больше кислорода, так как некоторая (незначительная) его часть может пойти на окисление загрязнений, а не только на  дыхание рыб.

Некоторые органические загрязнения могут быть токсичными для рыб. Это в основном те, которые образуются при анаэробном (в отсутствии кислорода) разложении органических веществ и осадков. Такие процессы могут происходить как в биофильтре так и в самих рыбоводных бассейнах, если их конструкция не обеспечивает вымывание осадков и/или если проток воды через них слишком низкая.

7. Железо и тяжёлые металлы.

Железо, содержащее в артезианской воде, иногда не позволяет использовать её для рыбоводных целей.  Для подпитки УЗВ с незначительной подменой воды достаточно чтобы концентрация общего железа не превышала 2-3 мг/л. Для выращивания форели требования более жёсткие: железа не должно быть более 0,5 мг/л. Для приготовления морской воды железа вообще не должно быть более 0,1 мг/л. Особенно вредно оказывается для рыбоводства закисное железо, которое при контакте с растворённым в воде кислородом быстро превращается в окисное, которое начинает медленно коагулировать и выпадать в осадок, забивая рыбе, особенно мальку, жабры и затрудняя газообменные процессы.  Помимо железа в природных водах иногда встречается марганец. В общем случае он ведёт себя подобно железу, т.е. также выпадает в осадок в нейтральной среде при контакте с растворённым в воде кислородом. Но к концентрации марганца требования жестче чем к железу, вода для рыбоводства не должна содержать его выше 0,3 мг/л. 

Наличие в воде других металлов, таких как медь, хром, никель и т.п.не допускается, потому что такие металлы могут накапливаться в тканях тела рыбы и делать её фактически несъедобной. Такие металлы редко встречаются в природных водах, если они присутствуют, то чаще всего они вызваны антропогенным загрязнением воды.

Отходы рыбоводства не исчезают

Отходы рыбоводства не исчезают даже при выращивании рыбы в УЗВ с постоянным повторным использованием воды для ее очистки. Загрязнения и экскременты рыб должны попасть куда-либо даже в этом случае. Биологические процессы в системе в некоторой мере уменьшают количество органических соединений благодаря простому биологическому разложению или минерализации внутри системы. Тем не менее, значительное количество органического осадка по-прежнему требует обработки.

Отходы, покидающие процесс рециркуляции, обычно происходят из механического фильтра, где экскременты и другие органические вещества отделяются и поступают в выпускной патрубок фильтра. Очистка и промывка биофильтров также увеличивают общий объем воды, покидающей рециркуляционный цикл.

Стоки их канализации УЗВ, могут очищаться различными способами. Довольно часто устанавливается вторичная механическая очистка воды, предназначенная для концентрации шлама-осадка, находящегося в сбросной воде. Отсюда осадок попадает в накопитель для седиментации или дальнейшего механического обезвоживания, после чего она сбрасывается на рельеф, обычно как удобрение для фермеров. Механическое обезвоживание также облегчает обращение с рыбоводным осадком и уменьшает его объем, благодаря чему стоимость удаления или возможные сборы уменьшаются.

Недостатками механического обезвоживания являются более высокие инвестиционные и эксплуатационные расходы. Очистка   воды в УЗВ, проходящая вторичную очистку, как правило, имеет высокие концентрации азота и фосфора. Этот так называемый «осветленный сток» может быть выпущен в окружающую среду, в реку и т.д., либо возвращен в УЗВ. Питательные вещества, содержащиеся в осветленном стоке, могут быть удалены, если направить воду в водоочистные пруды с растениями, корневую зону или земляной фильтр, где соединения фосфора и азота удаляются. Азот, содержащийся в осветленном стоке, также может быть удален способом денитрификации.

Важно отметить, что рыбы выделяют отходы не так, как другие животные, например, свиньи или коровы. Азот, главным образом, выделяется в форме мочи через жабры, только небольшая его часть выделяется в форме экскрементов через анальное отверстие. Фосфор выделяется только с экскрементами. Таким образом, основная часть азота полностью растворена в воде и не может быть удалена механическим фильтром. Удаление экскрементов механическим фильтром задержит меньшую часть азота, находящуюся в стоках вод УЗВ, а также большее количество фосфора. Остающийся в воде растворенный азот преобразовывается в биофильтре, главным образом, в нитрат. В этой форме азот легко усваивается растениями и может использоваться в качестве удобрения в сельском хозяйстве либо может быть удален в очистительных прудах с растениями. Важно, чтобы стоки УЗВ из рыбоводных бассейнов сразу подавались на механический фильтр и не разбивались преждевременно. Чем более целыми и твердыми являются экскременты, тем больше процент удаления твердых частиц и других соединений.

Чем выше степень рециркуляции, тем меньше подпиточной воды используется и тем меньше сбросной воды надо очищать. После очистки воды для рыб, как первого этапа, оставшееся небольшое количество воды может просто быть выпущено на рельеф недалеко от хозяйства для фильтрации. В любом случае, общий объем сбросной воды значительно ниже, чем на традиционных рыбных хозяйствах. Рециркуляция является эффективным способом для снижения воздействия рыбоводства на окружающую среду, но очистка сточных вод требует жесткого ежедневного управления для обеспечения эффективной работы системы очистки.

Комбинация интенсивного рыбоводства, в УЗВ или традиционного, с экстенсивными рыбоводными системами, такими как, например, традиционным разведением карпа, может стать простым способом переработки стоков УЗВ. Питательные вещества из интенсивной системы используются в качестве удобрений в экстенсивных прудах, когда излишек воды с интенсивного хозяйства поступает в карповые пруды. Вода из экстенсивных прудов повторно использоваться в качестве производственной воды в интенсивном хозяйстве. Водоросли и водная растительность, растущие в экстенсивных прудах, поедаются растительноядными рыбами, которые в итоге облавливаются и используются для потребления. В интенсивной системе достигаются эффективные условия выращивания, а экологические воздействия устраняются благодаря комбинации с экстенсивными прудами.

Важные аквакультурные поправки

Важные аквакультурные поправки…

Госдума приняла в первом чтении поправки, позволяющие рыбоводам получать земельные участки в аренду без дополнительных торгов. Предприятия аквакультуры смогут размещать на них объекты производственной инфраструктуры.

Законопроект «О внесении изменений в отдельные законодательные акты РФ в части совершенствования земельных и иных отношений, возникающих при осуществлении предпринимательской и иной деятельности в области аквакультуры (рыбоводства)» депутаты рассмотрели на пленарном заседании 24 сентября.

Представляя законопроект, замминистра сельского хозяйства – руководитель Росрыболовства Илья Шестаков рассказал, что сейчас предприятия, которые хотят заниматься аквакультурой, заключают договоры пользования рыбоводным участком по результатам торгов. Но для производственной деятельности им необходима рыбоводная инфраструктура, которая располагается на берегу. Это могут быть сооружения для подготовки посадочного материала, склады для хранения рыбоводного оборудования или другого инвентаря.

«В связи с этим предлагается наделить рыбоводные хозяйства правом получать в аренду без проведения дополнительных торгов земельный участок, находящийся в государственной или муниципальной собственности», – отметил замглавы Минсельхоза. Он добавил, что аналогичная норма для рыбопромысловых участков уже предусмотрена в Земельном кодексе.

Поправки разрешают аквафермерам задействовать и территории, находящиеся в государственной или муниципальной собственности, без предоставления земельного участка. Для этого потребуется разрешение от местных властей на использование таких земель для создания некапитальных строений и сооружений, предназначенных для товарной аквакультуры.

Кроме того, в закон об аквакультуре (рыбоводстве) предполагается внести новую статью 5.1 «Особенности использования земель и земельных участков для целей аквакультуры (рыбоводства)». «В данную статью включены нормы, содержащиеся в земельном и лесном законодательстве, что сделает более целостным и комплексным отраслевой закон об аквакультуре», – заявил Илья Шестаков.

По итогам голосования законопроект был принят в первом чтении...

Должностная инструкция оператора УЗВ

Должностная инструкция оператора УЗВ

В стандартных технологических проектах, в том числе хозяйств на основе УЗВ, имеется такой раздел как "Штатное расписание предприятия". Данный раздел содержит информацию о численности персонала, требуемых профессиях, количества смен.

Однако при вводе объекта в эксплуатацию, при комплектовании штата специалистами, возникает необходимость различных эксплуатационных документов, по которым новое предприятие будет в дальнейшем функционировать. 

Мы хотим поделиться одним из примеров наших работ - должностной инструкцией оператора УЗВ.

Должностная инструкция оператора по обслуживанию установок замкнутого водоснабжения (УЗВ)

  1. Дежурный оператор, заступивший на дежурство, обязан:

1.1. Проверить работу установок, а также работу всех агрегатов и механизмов, обслуживающих установки, путем осмотра всех работающих механизмов и агрегатов.

1.2. Проверить параметры по показаниям соответствующих приборов.
1.3. Получить от сдающего дежурство сведения о работе установок и поступивших распоряжениях, после этого произвести соответствующие записи в журнале приема и сдачи дежурства. С этого времени оператор, принявший дежурство, несет полную ответственность за работу установок, а также агрегатов и механизмов, обслуживающих их.


  1. В обязанности дежурного оператора входит:
    2.1. Поддержание в чистоте и надежном эксплуатационном режиме всех механизмов и оборудования, входящих в состав установок, путем постоянного контроля работы механизмов, оборудования, систем трубопроводов, арматуры.

2.2. Устранение всех возникших неисправностей за время своего дежурства. Все проводимые работы по поддержанию механизмов и оборудования в надлежащем техническом состоянии должны отражаться в журнале. В случае выхода из строя механизма перейти на дублирующий вариант, принять все меры по его восстановлению, если возможно, восстановить своими силами, доложить в срочном порядке администрации. Во всех случаях произвести записи в журнале.

2.3. Участие в ремонтных работах.
2.4. Обеспечение поддержания всех параметров, влияющих на рост и жизнестойкость выращиваемого объекта, а именно: температурный режим, содержание кислорода в рыбоводных емкостях, водообмен, нормы и режим кормления, режим очистки рабочей воды, сброс загрязнений, подпитки.

3. Водообмен. Кроме специально оговоренных случаев, количество подаваемой воды в бассейны должно быть в соответствии с установленными на предприятии нормами. Нужно помнить, что водообмен имеет важное значение, а именно: вода является носителем кислорода и средой выноса загрязнений. Учитывая это, необходимо поддерживать указанный водообмен и периодически вести контроль, особенно после промывки бассейнов, биофильтров и остановок насосов.


  1. Кислородный режим. В бассейнах необходимо поддерживать содержание кислорода в пределах, соответствующих принятых на предприятии нормам. Замер кислорода проводится непосредственно в бассейнах, датчик прибора должен находиться вне зоны поступления воды. При низком содержании кислорода в бассейне следует принять меры. Контрольные замеры кислорода производить каждые 4 ч и записывать показания в журнал.

  2. Нормы и режим кормления Дежурный оператор должен следить за дозировкой и интервалами выдачи корма, рекомендованными главным рыбоводом. Необходимо помнить: бессистемная выдача корма приводит к снижению КПД использования корма, загрязнению воды, снижению концентрации кислорода и к проблемам печени.

  3. Очистка, сбросы, подпитка. Очистка фильтрующего наполнителя биофильтра производится продувкой по мере загрязнения, но не реже двух раз в месяц. Сбросы с механического фильтра производятся в автоматическом режиме. Подпитка проводится для восстановления первоначального объема воды после сбросов и не должна превышать 10-12 % общего объема.

  4. Дежурный оператор несет полную ответственность за:
    7.1. Выполнение данной инструкции, инструкций предприятия-проектировщикаданного завода, инструкций по эксплуатации оборудования.

7.2. Объективность данных по параметрам, вносимых в журнал.
7.3. Санитарно-гигиеническое состояние, как самой установки, так и помещения.

7.4. Соблюдение санитарно-пропускного режима.
7.5. Соблюдение техники безопасности и пожарной безопасности.

8. Категорически запрещается:
8.1. Во время работы установок отлучаться с рабочего места даже кратковременно и допускать на рабочее место посторонних лиц.

8.2. Пользоваться промасленной ветошью и рукавицами при работе с кислородом и озоном.

8.3. Нарушать санитарно-пропускной режим.

8.4. Нарушать технику безопасности и пожарную безопасность.

9. Сдача дежурства
9.1. Дежурный должен закончить все работы по обслуживанию механизмов и установок. Установки должны работать в заданном режиме с соблюдением всех параметров. Установки и помещения должны быть чистыми.

9.2. Обо всех нарушениях в работе установок и механизмов, а также о поступивших распоряжениях сделать соответствующие записи в журнале и сообщить принимающему дежурство.

«Зимовка» производителей

«Зимовка» производителей

Зимовка в УЗВ

Важным условием нормального развития репродуктивной системы осетровых рыб является сезонность температурного режима содержания старших ремонтных групп. Выращивание ремонта в течение первых лет в теплой воде с круглогодичным кормлением позволяет ускорить созревание в 1,5–2,5 раза и существенно сократить продолжительность нерестовых интервалов. При этом для успешного завершения процесса гонадогенеза необходимо в определенном для каждого вида возрасте вводить в технологический цикл период содержания при низкой температуре – «зимовку» с обязательной пищевой депривацией.


Постоянно высокие температуры и кормление могут привести к ожирению осетровых рыб и значительной задержке их окончательного созревания. Даже при достижении самками осетровых рыб 4-й стадии зрелости гонад выходы икры (соматические индексы) могут быть очень низкими.


Скорость генеративных процессов у осетровых зависит, в первую очередь, от температуры содержания. При расчете теплозапаса, выражающегося в градусо-днях, принимается во внимание только период, проведенный рыбой при так называемой эффективной температуре. Эффективной принято считать температуру от нерестового оптимума до минимальной температуры воды, при которой рыба перестает питаться.


Хотя общий теплозапас и является достаточно универсальным показателем, это не единственный фактор, определяющий возраст полового созревания и продолжительность межнерестовых интервалов. При превышении плотностей посадок, слишком малом или избыточном рационе, несоблюдении рекомендаций по проведению «зимовки» созревание производителей может сильно затянуться и сопровождаться значительными нарушениями гонадогенеза. Восстановление репродуктивных качеств таких рыб или окажется невозможным, или потребует применения длительной и сложной терапии.


Технология формирования продукционных стад осетровых с применением установок замкнутого водоснабжения предусматривает проведение искусственной зимовки – содержания производителей в течении определенного времени в бассейнах с прямоточной системой водоподачи и пониженной температурой воды.

«Зимовка» является необходимым этапом технологического процесса, так как важным условием нормального развития репродуктивной системы осетровых рыб является сезонность температурного режима. Для незрелых и потенциальных самок, так же как и для зрелых, начиная с 5-го года выращивания (после осенней бонитировки) в технологический цикл вводится период «зимовки».


Для чего нужна искусственная зимовка производителям:


1. В условиях искусственной зимовки, максимально приближенных к естественным, у самок происходит дозревание ооцитов.

2. За время выращивания в УЗВ генеративная ткань самок приобретает запах и вкус, не свойственные икре, зимовка способствует уменьшению данных негативных факторов.

3. У самцов завершается процесс сперматогенеза.


Результаты «зимовки» во многом зависят от физиологического состояния осетровых рыб и абиотических факторов среды обитания. Сигналом к началу перехода на «зимовку» служит снижение температуры воды и, как следствие, почти полное прекращение потребления корма осетровыми.


Для успешной «зимовки» очень важны упитанность и масса рыб, поэтому необходимо кормление осетровых, особенно в конце периода выращивания, кормами с повышенным содержанием жира, так как именно в этот период в организме рыб создаются запасы резервных питательных веществ. Рекомендуется также проводить инъецирование рыб витаминами С и Е перед «зимовкой».


При выращивании осетровых с понижением температуры воды до 12 °С обычно прекращают проводить кормление рыбы. Негативной стороной при этом является значительная потеря массы за «зимовку», ухудшение физиологического состояния рыбы, длительный период ремиссии при возобновлении кормления и, как следствие, удлинение сроков выращивания.


Искусственная зимовка – содержание рыб при низкой (2–6 ºС) температуре в течение 2–3 мес. Данный элемент биотехники является обязательным при работе со всеми производителями осетровых, как с отловленными в естественных водоемах в период осенней заготовки, так и с рыбами из маточного стада.


Оптимальным режимом перевода самок в состояние искусственной зимовки является понижение температуры с градиентом 1–2 °С в сутки. Выращивание рыбы в системе УЗВ происходит при средней температуре 23 °С. В течение 12–13 сут зрелые самки переходят в режим искусственной зимовки с температурой воды 4–5 °С. При низких температурах самки малоподвижны, кормление их не производится.


Нежелательны различного рода прикосновения к рыбе, так как при низких температурах поврежденный слой слизи и кожный покров длительное время не восстанавливаются, что может привести к заболеванию и гибели рыбы. Продолжительность искусственной зимовки не менее 60 сут или не менее 300 градусо-дней.


В течение всего периода «зимовки» в системе необходимо поддерживать оптимальные водообмен и проточность, постоянно осуществлять контроль за санитарным и гидрохимическим режимами. Также, по возможности, необходимо контролировать состояние и поведение рыб. Кормление производителей осетровых рыб в период «зимовки» не производится, что является важным условием эффективного завершения дозревания гонад…

Значение водообмена. Школа Рыбовода

Значение водообмена. Школа Рыбовода

Водообменом в установках УЗВ принято считать скорость прохождения полного цикла воды в системе, т.е. за какой промежуток времени насосы произведут полную откачку воды из бассейнов и прогонят ее через систему фильтрации и водоподготовки. Еще проще сказать, если общее количество воды в вашей системе составляет 5000 литров (включая трубопроводы, систему фильтрации и непосредственно бассейны), а производительность насоса составляет 10000 л/час, то это будет двукратный обмен.

Скорость водообмена в УЗВ, при расчетах, обычно задают в диапазоне от 1 до 4. Связано это с гидрохимией воды и экономикой. При скорости водообмена менее 1, вредные элементы (аммоний, нитраты, нитриты), имеют высокую скорость накопления в системе, что вызывает гибель гидробионтов. При высоких значениях начинается неконтролируемое течение, повышенный расход электроэнергии и перемешивание взвешенных частиц. Все эти факторы сказываются на себестоимости продукции. Поэтому при проектировании и эксплуатации УЗВ стоит считать правильно. Обычно двукратного обмена достаточно для стабильной работы всей системы.

Рассмотрим негативные явления, связанные с высоким течением воды в емкостях с гидробионтами. Повышенный поток заставляет обитателей сопротивляться потоку жидкости, а как следствие биохимические реакции в тканях ускоряются, что приводит к повышенному расходу энергии и истощению. Как следствие повышается кормовой коэффициент. Высокая величина водообмена в системе фильтрации также оказывает негативное влияние на процесс очистки: в механическом фильтре высокая скорость протекания жидкости снижает эффективность за счет турбулентности потока, взвешенные частицы перемешиваются и качество фильтрации заметно падает. Так же и в биофильтре, при высоких скоростях, поток воды не позволяет закрепиться колонии бактерий, как следствие - скудная колония бактерий на большой площади поверхности.

Низкая скорость водообмена еще более негативно сказывается на протекании процессов: отсутствие движения потока в области обитания гидробионтов приводит к образованию застойных зон, в которых накапливаются вредные элементы, отсутствует растворенный кислород и концентрация аммония нитратов и нитритов превышает допустимую норму. Низкая скорость омывания поверхности субстрата в биофильтре приводит к отсутствию питания для аэробных бактерий, и как следствие - минимальная популяция, снижение растворенного кислорода, рост показателей диоксида углерода, который изменяет водородный показатель (рН) воды в сторону кислотности.

В промышленных установках замкнутого водоснабжения, с большими объемами и плотностями посадки, показатель водообмена рассчитывается индивидуально на основании заданных условий.

Основная цель водообмена - поддержание концентрации веществ, влияющих на жизнедеятельность рыбы, в заданном диапазоне значений. Во время рыбоводных расчетов функционирования УЗВ определяют предельные допустимые концентрации кислорода, аммонийного азота, углекислого газа, нитратов и нитритов, а также взвешенных веществ и оценивают рабочие параметры системы подготовки воды. Затем для всех предельных допустимых концентраций отдельно рассчитывают значение водообмена, которое позволит поддерживать предельную концентрацию. В итоге расчета выбирают предельно допустимое значение, относительно которого будут рассчитываться остальные параметры. Водообмен рассчитывают для каждого отдельного вещества на основании уравнения баланса масс, смысл которого сводится к равенству покидающих бассейны веществ и сумму поступивших, произведенных и потребленных веществ за единицу времени...

Налог на скважину в частном доме

Налог на скважину в частном доме

Налог на скважину в частном доме регламентируется нормами нескольких правовых актов – Налоговым кодексом в части, касающейся водного налога (глава 25.2), законом «О недрах» от 21.02.1992 г. № 2395-1, законом о садоводстве от 29.07.2017 № 217-ФЗ. Необходимость налогообложения использования подземных водных ресурсов обусловлена стремлением государства к сохранению запасов чистой пресной воды и получению материальной компенсации в случае расходования такого природного ресурса.

Налог на артезианскую скважину в частном доме в 2019 году

В соответствии со ст. 333.8 НК РФ плательщиками водного налога могут быть и юридические, и физические лица. Налог начисляется по каждому факту забора воды или по случаям использования акваторий водных объектов. Не является предметом налогообложения вода, используемая для тушения пожаров, не учитывается в составе налоговой базы минеральная или термальная вода из подземных источников (полный перечень исключений предусмотрен п. 2 ст. 333.9 НК РФ).

Налог на скважины в частных домах РФ взимается, если пользование таким водным объектом подлежит обязательному лицензированию.

Получать лицензию и платить налог не придется, если вода из подземных источников добывается на поверхностных слоях грунта и используется для личных и бытовых нужд (ст. 19 и 19.2 Закона № 2395-1):

  • правом пользования подземными водами обладают землевладельцы, землепользователи, на чьих участках пробурена скважина;

  • суммарный объем добычи подземных вод не должен превышать 100 куб. м ежесуточно;

  • добываемая вода не используется в предпринимательской деятельности и не является источником получения физическим лицом материальной выгоды в любых формах;

  • скважина или колодец не пересекаются с системой централизованного водоснабжения.

Садоводческие организации и объединения могут пользоваться подземными водами для своего хозяйственно-бытового водоснабжения без получения лицензии до 01.01.2020 г. (ст. 5 закона от 29.12.2014 № 459-ФЗ).

Налог на колодец в частном доме не взимается, так как колодезная вода не является ценным ресурсом, она предназначена для удовлетворения сельскохозяйственных и бытовых потребностей (ею можно напоить скот, полить приусадебный участок, но она не пригодна без дополнительной очистки для употребления человеком).

Налог на скважину в частном доме 2019 необходимо платить, только если вода забирается из глубинных слоев грунта. В этом случае в разы возрастает качество добываемой воды по сравнению с ресурсами, находящимися на поверхностных слоях горизонта. Артезианская вода представляет собой один из ценнейших природных ресурсов, поэтому ее расходование не может быть бесплатным и бесконтрольным. Если пробуренная на участке скважина будет затрагивать известняковые слои грунта, залегающие глубоко под землей, такой источник подлежит лицензированию, так как он позволяет добывать чистую артезианскую воду.

Налог на артезианскую скважину в частном доме начисляется по дифференцированным ставкам с привязкой к месту нахождения такого источника водоснабжения. Артезианские источники должны быть лицензированными, для этого необходимо провести анализ добываемой воды, получить паспорт на скважину с результатами гидрогеологических исследований и кадастровыми документами. Скважина должна быть оснащена прибором учета объема забираемой из источника воды.

Какой налог на скважину в частном доме следует уплачивать? Сумма платежа зависит от региона и объема потребляемой из артезианской скважины воды. В лицензии указывается предельный лимит водозабора, при превышении этого показателя налог начисляется в пятикратном размере за все кубометры откачанной воды сверх нормы. Налог на скважину в частном доме, стоимость налогового бремени определяется с учетом ставок, указанных в НК РФ в ст. 333.12. Зафиксированные в законе тарифы необходимо ежегодно актуализировать путем умножения на коэффициент индексации и округления результата до целого рубля (п. 1.1 ст. 333.12 НК РФ).

Сумма налога не зависит от глубины пробуренной скважины, на расчетную величину влияет тип источника воды и объем потребления природного ресурса, так как ставка налогообложения утверждена в твердой сумме за каждую тысячу кубометров забранной воды. Наибольшее значение налогового тарифа утверждено для бассейна озера Байкал, которое относится к Восточно-Сибирской экономической зоне (678 руб. за тысячу кубометров). Самая низкая ставка налогообложения предусмотрена для подземных вод, добываемых вблизи реки Печора (300 руб. за тысячу кубометров).

При расчете налога на скважину в частном доме, в 2019 году нужно учитывать коэффициент индексации, равный 2,01. Например, при использовании воды из скважины вблизи озера Байкал базовый тариф налога составляет 678 руб. за тысячу кубов откачанной воды. В 2019 году ставка с учетом коэффициента будет иметь значение 1363 руб. (678 х 2,01). Если из скважины ежедневно отбирать по 120 кубов воды, за квартал придется заплатить 14 720 руб. (120 кубов х 90 дней х 1363 / 1000).

Налог на подземные воды для частных домов, садовых товариществ, субъектов предпринимательской деятельности налоговый орган не рассчитывает, все налогоплательщики обязаны самостоятельно исчислять обязательства по водному налогу и погасить их в срок до 20 числа в месяце, который следует за истекшим налоговым периодом. Применительно к водному налогу налоговый период равен кварталу. Если объектов налогообложения несколько, налог суммируется и уплачивается единой суммой.

Гидрохимия. Жесткость воды. Азбука настоящего Рыбовода

Гидрохимия. Жесткость воды. Азбука настоящего Рыбовода

Жесткость - этим понятием пользуются при оценке воды в пресноводной аквакультуре. Первоначально под жесткостью понимали способность воды осаждать мыло.
В процессе обычно участвуют ионы Ca, Mg , Al, Fe, Mn, Sr, Zn, Н. Для практических целей достаточно оценки жесткости по Ca и Mg. Оценка ведется в мг-экв/л. Различают два вида жесткости: КАРБОНАТНАЯ и НЕКАРБОНАТНАЯ.
Общая жесткость равна сумме карбонатной и некарбонатной жесткости.
В литературе по рыбоводству жесткость иногда приводят в немецких градусах Но . Жесткость, создаваемая 10 мг/л CaO в воде соответствует 1 Hо . Жесткость в 1 мг-экв/л = 2,8 Но . Жесткость, создаваемая 50 мг/л CaCO3 соответствует 1 мг-экв/л.
КАРБОНАТНАЯ ЖЕСТКОСТЬ определяется по количеству кальция и магния, эквивалентному количеству карбонатов и гидрокарбонатов.
НЕКАРБОНАТНАЯ ЖЕСТКОСТЬ показывает количество катионов щелочно-земельных металлов, соответствующих анионам минеральных кислот: хлорид, сульфат, нитрат-ионам и др.
Жесткость - важный показатель качества воды в аквакультуре. Слишком мягкая вода не может удовлетворить потребности водных организмов в кальции и магнии. Необходима вода с жесткостью, как минимум, 5 Но или 1,8 мг-экв/л. Рекомендуемые рыбоводам оптимальные значения жесткости для хозяйств, например для для форелевых, 3,6 - 7,1 мг-экв/л.
Увеличение жесткости воды блокирует губительное влияние на гидробионтов других ионов, находящихся в воде (цинка, кадмия, меди, водорода).

Качество воды в хозяйстве. Выбор источника

Качество воды в хозяйстве. Выбор источника
При определении источника водоснабжения индустриального рыбоводного хозяйства необходимо предъявлять строгие требования к качественным свойствам воды. Любое вещество, растворенное в воде, может попасть в организм рыбы, а некоторые вещества проходят через жабры в кровь и ткани. Однако это не значит, что вода должна быть лишена каких-либо примесей или солей. Например, дистиллированная вода не пригодна для жизни рыб. Вода, являющаяся пресной, содержит до 1 г/л растворенных твердых веществ. Жесткая пресная, вода содержит около 300 мг/л растворенных твердых веществ, мягкая - около 40, средняя по жесткости - речная и озерная вода-100-150 мг/л растворенных веществ. Рыбоводным требованиям в наибольшей мере отвечает средняя по жесткости вода.
При выборе источника водоснабжения следует учитывать температурный режим и газовый состав как суточный, так и сезонный с учетом вышеуказанных требований для выращивания тех или иных видов рыб. Индустриальным рыбоводным хозяйствам с регулируемым температурным и газовым режимом воды, тем не менее, необходимо выбирать источники водоснабжения, обеспечивающие водой, требующей минимальной коррекции температуры и газового состава. Вода для индустриального рыбоводного предприятия может поступать с поверхностных и подземных источников.
Поверхностная вода обычно имеет сбалансированный солевой состав, но часто насыщена посторонними загрязняющими веществами. Подземная вода обычно свободна от загрязнений, но может нести токсичные для рыб вещества, например, метан или сероводород. Состав воды в основном определяется грунтами. Известняковые воды характеризуются жесткостью, большим количеством кальция, который оседает на стенах трубопроводов. Подземные воды, протекающие по гранитным грунтам, обладают невысокой жесткостью, в них меньше минеральных веществ, но нередко эти воды содержат много свободной углекислоты, которая вызывает коррозию трубопроводов. Для подземных вод характерна постоянная температура в течение года. В источниках неглубокого залегания температура воды приближается к среднегодовой температуре атмосферного воздуха для данного района. При глубине более 15 м температура воды подземных источников возрастает примерно на 1 °С на каждые 32 м.
Существует 3 вида подземных источников - родники, почвенно-грунтовые воды и скважины. Последние делятся на напорные (артезианские) и колодцы.
Родники обладают всеми преимуществами, свойственными грунтовым источникам, и дают воду высокого качества с относительно постоянной температурой. Однако в родниках обычно содержится мало растворенного кислорода. К тому же дебит родников обычно невелик.
Почвенно-грунтовые воды достаточно обильны лишь в некоторых районах России. Они содержат мало кислорода и для подачи ее необходимы насосы. Для получения почвенно-грунтовых вод нужно вскрывать почву в местах концентрации этих вод неглубоко от поверхности. Обычно дебит этих вод невелик. Скважина и колодец могут дать необходимое количество воды, но для получения ее следует использовать насосы. Вода скважины содержит обычно сероводород и очень мало кислорода. Поэтому необходимо предусматривать устройства для улучшения газового состава воды. Колодец обычно обладает ограниченным дебитом воды.
Очевидно, родниковая и скважинная вода наиболее пригодны для индустриального рыбоводства, поскольку обладают такими качествами, как чистота, постоянство расхода. Однако температура этой воды на протяжении всего года ниже оптимального уровня даже для холодолюбивых лососевых рыб. Эта вода нуждается в подогреве и дегазации, а также и в насыщении кислородом.
Рыбоводные предприятия индустриального типа могут использовать также воду поверхностных водоисточников - рек, озер, ручьев, водохранилищ и даже прудов. Качество воды этих источников зависит от широты местности, геологии ложа, времени года, ширины, глубины, площади, уклона и других факторов. Поверхностные источники отличаются суточными и сезонными колебаниями температуры воздуха, газового состава. В них обитает много животных и растительных организмов, попадание которых в рыбоводные емкости не желательно - они могут быть конкурентами в питании, потреблении кислорода, источниками многих болезней. Вода поверхностных источников несет с собой некоторое количество органических и минеральных веществ и нуждается в фильтрации и очистке. Поверхностные водоисточники нередко насыщены загрязняющими веществами различной природы - удобрениями, смываемыми с полей, химическими веществами различной природы, промышленными и коммунальными стоками.
Учитывая упомянутые выше недостатки, выбор источника водоснабжения рыбоводного предприятия индустриального типа требует серьезного предварительного анализа факторов, в особенности анализа качества и системы очистки воды. Тем не менее, доступность и неограниченный дебит поверхностной воды являются экономически привлекающим фактором в проектировании и строительстве рыбоводных предприятий индустриального типа. При строительстве такого хозяйства в каждом конкретном случае снабжение водой определяется индивидуально, с учетом множества факторов.

Вредны ли нитраты в УЗВ?

Вредны ли нитраты в УЗВ?

Эксперимент проводился The Conservation Fund’s Freshwater Institute (USA) (1). В ходе эксперимента было установлено что концентрация нитратов до 100 мг/л не опасна для выращивания лосося в пресной воде. НО, важно отметить, что выводы который может сделать рыбовод из данного эксперимента — могут быть катастрофически ошибочны!
Дело в том, что в эксперименте анализировалось влияние только чистого нитрата, без учета интерферентных влияний фосфатов, нитритов, аммиака, MIB, геосимина и т.д. Для этого воду подменивали в огромном объеме, для достижения абсолютной чистоты по всем показателям. А потом в воду добавляли искусственно нитрат натрия, доводя концентрацию нитрата до 100 мг/л.
Таким образом, исследовалось влияние только чистого нитрата на здоровье, скорость роста и продуктивность лосося. В реальной же УЗВ таких условий быть не может, и на здоровье рыбы одновременно влияют множество различных растворенных веществ, усиливая свое влияние друг на друга. Нитрат в присутствие других веществ может оказывать неблагоприятное воздействие на индустриальную аквакультуру или же усиливать патогенное влияние других веществ. Таким образов, постановка цели эксперимента: «выявление влияние чистого нитрата на аквакультуру» нам кажется несколько сомнительной.
Рыбоводы могут посчитать что нитраты не вредны, и не учесть при этом наличие в реальной УЗВ прочей растворенной органики. К тому же, эксперимент определяет «безопасную» концентрацию нитратов до 100, мг/л, то есть концентрация выше — может быть опасна, и в любом случае требуется постоянный мониторинг данного показателя в УЗВ.
Гораздо важнее чем безопасность нитратов для здоровья лосося, его безопасность для человека. ПДК нитратов для питьевой воды составляет 45 мг/л , для рыбохозяйственных водоемов — 40 мг/л по нитратам или 9,1 мг/л по азоту.
Нитраты по сравнению с другими азотными соединениями наименее токсичны, однако в значительных концентрациях вызывают вредные последствия для организмов. Основная опасность нитратов — в их способности накапливаться в организме и окисляться там до нитритов и нитрозаминов, которые значительно более токсичны и способны вызывать так называемое вторичное и третичное нитратное отравление.
Накопление больших количеств нитратов в организме способствует развитию метгемоглобинемии. Нитраты вступают в реакцию с гемоглобином крови и образуют метгемоглобин, которые не переносит кислород и, таким образом, вызывает кислородное голодание тканей и органов.
Следовательно, важно учитывать концентрацию нитратов в самом мясе рыбы, а не только в воде для ее выращивание. Нужно стремится к минимизации нитратов в воде УЗВ, как в прочим и прочих растворенных веществ, для повышения качества рыбы и здоровья людей.

https://www.sciencedirect.com/science/article/pii/S0144860917301231

Методы очистки природной и оборотной воды

Методы очистки природной и оборотной воды

Вода природных источников, особенно поверхностных, часто не отвечает требованиям, предъявляемым в рыбоводстве к качеству воды. Обычно она замутнена взвесями и загрязнена. Употреблять ее без предварительной очистки, как правило, нельзя. Подземные воды, особенно глубокие, прозрачны, чисты и не требуют очистки. Однако нередко имеют повышенную минерализацию, содержат много железа, сероводорода, фтора. В таких случаях подземные воды также нуждаются в улучшении. При заборе подземных вод с неглубоких горизонтов в них могут попадать загрязнения, для ликвидации которых воду приходится подвергать обеззараживанию (дезинфекции).

Изменением состава примесей, находящихся в воде, можно улучшить ее качество в нужном для потребителя направлении. С этой целью вода подвергается переработке на специальных устройствах по улучшению ее качества.

Очистка воды заключается в ее осветлении, обесцвечивании, дезодорации (устранении запахов и привкусов) и обеззараживании.

Удаление из воды взвешенных веществ, т. е. уменьшение ее мутности, называется осветлением.

Устранение коллоидных частиц, обусловливающих цветность воды, называется обесцвечиванием.

Устранение различных запахов и привкусов воды объединяется процессом дезодорации.

Устранение солей, обусловливающих жесткость воды, называется ее умягчением.

Удаление из воды избытка солей железа называется обезжелезиванием.

Уничтожение в воде бактерий носит название обеззараживания воды.

Сырая, т. е. еще не очищенная вода из источника водоснабжения поступает на очистную станцию, где проходит через ряд устройств, в которых протекают различные производственные операции по превращению ее в чистую воду.

Существуют два метода осветления природной воды: естественный (безреагентный) и искусственный (реагентный). При первом методе сырая вода в естественном виде очищается без применения каких-либо химикатов, сохраняя при этом химический состав осветляемой природной воды. Безреагентное осветление воды может осуществляться двумя способами: пленочного фильтрования и объемного фильтрования. При большой мутности осветляемой воды иногда возникает необходимость предварительного грубого осветления воды в отстойниках, гидроциклонах. При искусственном методе осветления сырая вода подвергается химической обработке, которая в определенной степени изменяет ее химический состав, а также форму и размеры суспензий. Осветление воды искусственным методом осуществляется тремя этапами. На первом, подготовительном этапе сырая вода подвергается обработке различными химическими реагентами. Подготовка воды увеличивает эффективность последующих приемов осветления. Второй этап осветления заключается в осаждении из воды взвешенных частиц. На последнем этапе фильтрацией удаляются из воды мелкие суспензии, не задерживаемые осаждением.

В рыбоводных установках с оборотным использованием воды используют интенсивные и эффективные методы очистки, обеспечивающие требуемое количество оборотной воды с ее минимальными потерями. Технологическая схема очистки воды в них должна обладать надежностью и стабильностью в работе при возможных изменениях ее внешних параметров. Методы очистки воды в рыбоводных установках с оборотным использованием воды подразделяют на четыре группы: физические, химические, физико-химические и биологические. В зависимости от назначения блока очистки в нем может присутствовать тот или иной метод или их комбинация.

Физический метод подразумевает отстаивание, осаждение, фильтрацию и флотацию для удаления твердых отходов из воды. Очистка воды осуществляется в отстойниках различных типов (горизонтальных, вертикальных, радиальных), а также полочных и тонкослойных отстойниках, снабженных какими-либо скребковыми устройствами. Эффективность процесса отстаивания в целом определяется соотношением объема емкости отстойника и скорости протока воды через него. Принцип осаждения присутствует в случае применения центрифуги и гидроциклонов. Они способны не только осветлять воду, но и способствовать удалению некоторого количества азотных соединений из оборотной воды.

Химические методы включают окисление и коагуляцию органических загрязнений с помощью соединений хлора, озона, гидроокисей железа или алюминия, квасцов. Из химических методов все большая роль отводится озону, использование которого основывается исключительно на его стерилизующих свойствах, поскольку озон не разлагает малых концентраций азотистых соединений в воде.

В качестве физико-химических методов применяют метод адсорбции. В качестве сорбентов используются активированный уголь, цеолиты или искусственные смолы.

Биологический метод является наиболее распространенным способом очистки воды и заключается в утилизации загрязнений с помощью микроорганизмов в процессе минерализации, нитрификации и денитрификации.


Назад Вперед
Наверх

Уважаемые посетители!
Мы рады приветствовать Вас на сайте
Fish-Agro -Технологии и оборудование,.
Рыборазведение в УЗВ